质数共享最小有效位或最高有效位的多幂RSA模的分解

IF 0.1 Q4 MATHEMATICS
Omar Akchiche, O. Khadir
{"title":"质数共享最小有效位或最高有效位的多幂RSA模的分解","authors":"Omar Akchiche, O. Khadir","doi":"10.1515/gcc-2016-0002","DOIUrl":null,"url":null,"abstract":"Abstract We study the factorization of a balanced multi-power RSA moduli N = prq when the unknown primes p and q share t least or most significant bits. We show that if t ≥ 1/(1+r)log p, then it is possible to compute the prime decomposition of N in polynomial time in log N. This result can be used to mount attacks against several cryptographic protocols that are based on the moduli N.","PeriodicalId":41862,"journal":{"name":"Groups Complexity Cryptology","volume":"27 1","pages":"47 - 54"},"PeriodicalIF":0.1000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Factoring multi-power RSA moduli with primes sharing least or most significant bits\",\"authors\":\"Omar Akchiche, O. Khadir\",\"doi\":\"10.1515/gcc-2016-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study the factorization of a balanced multi-power RSA moduli N = prq when the unknown primes p and q share t least or most significant bits. We show that if t ≥ 1/(1+r)log p, then it is possible to compute the prime decomposition of N in polynomial time in log N. This result can be used to mount attacks against several cryptographic protocols that are based on the moduli N.\",\"PeriodicalId\":41862,\"journal\":{\"name\":\"Groups Complexity Cryptology\",\"volume\":\"27 1\",\"pages\":\"47 - 54\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groups Complexity Cryptology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/gcc-2016-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complexity Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gcc-2016-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

摘要研究了未知素数p和未知素数q共享最小有效位或最高有效位时平衡多幂RSA模N = prq的分解问题。我们证明,如果t≥1/(1+r)log p,则可以在log N的多项式时间内计算N的素数分解。这个结果可用于对基于模N的几种加密协议进行攻击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Factoring multi-power RSA moduli with primes sharing least or most significant bits
Abstract We study the factorization of a balanced multi-power RSA moduli N = prq when the unknown primes p and q share t least or most significant bits. We show that if t ≥ 1/(1+r)log p, then it is possible to compute the prime decomposition of N in polynomial time in log N. This result can be used to mount attacks against several cryptographic protocols that are based on the moduli N.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信