{"title":"基于外观的多层次信息元素特征融合注视估计","authors":"Zhonghe Ren, Fengzhou Fang, Gaofeng Hou, Zihao Li, Rui Niu","doi":"10.1093/jcde/qwad038","DOIUrl":null,"url":null,"abstract":"\n Gaze estimation is a fundamental task in many applications of cognitive sciences, human-computer interaction, and robotics. The purely data-driven appearance-based gaze estimation methods may suffer from a lack of interpretability, which prevents their applicability to pervasive scenarios. In this study, a feature fusion method with multi-level information elements is proposed to improve the comprehensive performance of the appearance-based gaze estimation model. The multi-level feature extraction and expression are carried out from the originally captured images, and a multi-level information element matrix is established. A gaze conduction principle is formulated for reasonably fusing information elements from the established matrix. According to the gaze conduction principle along with the matrix, a multi-level information element fusion (MIEF) model for gaze estimation is proposed. Then, several input modes and network structures of the MIEF model are designed, and a series of grouping experiments are carried out on a small-scale sub-dataset. Furthermore, the optimized input modes and network structures of the MIEF model are selected for training and testing on the whole dataset to verify and compare model performance. Experimental results show that optimizing the feature combination in the input control module and fine-tuning the computational architecture in the feature extraction module can improve the performance of the gaze estimation model, which would enable the reduction of the model by incorporating the critical features and thus improve the performance and accessibility of the method. Compared with the reference baseline, the optimized model based on the proposed feature fusion method of multi-level information elements can achieve efficient training and improve the test accuracy in the verification experiment. The average error is 1.63 cm on phones on the GazeCapture dataset, which achieves comparable accuracy with state-of-the-art methods.","PeriodicalId":48611,"journal":{"name":"Journal of Computational Design and Engineering","volume":"361 1","pages":"1080-1109"},"PeriodicalIF":4.8000,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Appearance-based gaze estimation with feature fusion of multi-level information elements\",\"authors\":\"Zhonghe Ren, Fengzhou Fang, Gaofeng Hou, Zihao Li, Rui Niu\",\"doi\":\"10.1093/jcde/qwad038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Gaze estimation is a fundamental task in many applications of cognitive sciences, human-computer interaction, and robotics. The purely data-driven appearance-based gaze estimation methods may suffer from a lack of interpretability, which prevents their applicability to pervasive scenarios. In this study, a feature fusion method with multi-level information elements is proposed to improve the comprehensive performance of the appearance-based gaze estimation model. The multi-level feature extraction and expression are carried out from the originally captured images, and a multi-level information element matrix is established. A gaze conduction principle is formulated for reasonably fusing information elements from the established matrix. According to the gaze conduction principle along with the matrix, a multi-level information element fusion (MIEF) model for gaze estimation is proposed. Then, several input modes and network structures of the MIEF model are designed, and a series of grouping experiments are carried out on a small-scale sub-dataset. Furthermore, the optimized input modes and network structures of the MIEF model are selected for training and testing on the whole dataset to verify and compare model performance. Experimental results show that optimizing the feature combination in the input control module and fine-tuning the computational architecture in the feature extraction module can improve the performance of the gaze estimation model, which would enable the reduction of the model by incorporating the critical features and thus improve the performance and accessibility of the method. Compared with the reference baseline, the optimized model based on the proposed feature fusion method of multi-level information elements can achieve efficient training and improve the test accuracy in the verification experiment. The average error is 1.63 cm on phones on the GazeCapture dataset, which achieves comparable accuracy with state-of-the-art methods.\",\"PeriodicalId\":48611,\"journal\":{\"name\":\"Journal of Computational Design and Engineering\",\"volume\":\"361 1\",\"pages\":\"1080-1109\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Design and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jcde/qwad038\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Design and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jcde/qwad038","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Appearance-based gaze estimation with feature fusion of multi-level information elements
Gaze estimation is a fundamental task in many applications of cognitive sciences, human-computer interaction, and robotics. The purely data-driven appearance-based gaze estimation methods may suffer from a lack of interpretability, which prevents their applicability to pervasive scenarios. In this study, a feature fusion method with multi-level information elements is proposed to improve the comprehensive performance of the appearance-based gaze estimation model. The multi-level feature extraction and expression are carried out from the originally captured images, and a multi-level information element matrix is established. A gaze conduction principle is formulated for reasonably fusing information elements from the established matrix. According to the gaze conduction principle along with the matrix, a multi-level information element fusion (MIEF) model for gaze estimation is proposed. Then, several input modes and network structures of the MIEF model are designed, and a series of grouping experiments are carried out on a small-scale sub-dataset. Furthermore, the optimized input modes and network structures of the MIEF model are selected for training and testing on the whole dataset to verify and compare model performance. Experimental results show that optimizing the feature combination in the input control module and fine-tuning the computational architecture in the feature extraction module can improve the performance of the gaze estimation model, which would enable the reduction of the model by incorporating the critical features and thus improve the performance and accessibility of the method. Compared with the reference baseline, the optimized model based on the proposed feature fusion method of multi-level information elements can achieve efficient training and improve the test accuracy in the verification experiment. The average error is 1.63 cm on phones on the GazeCapture dataset, which achieves comparable accuracy with state-of-the-art methods.
期刊介绍:
Journal of Computational Design and Engineering is an international journal that aims to provide academia and industry with a venue for rapid publication of research papers reporting innovative computational methods and applications to achieve a major breakthrough, practical improvements, and bold new research directions within a wide range of design and engineering:
• Theory and its progress in computational advancement for design and engineering
• Development of computational framework to support large scale design and engineering
• Interaction issues among human, designed artifacts, and systems
• Knowledge-intensive technologies for intelligent and sustainable systems
• Emerging technology and convergence of technology fields presented with convincing design examples
• Educational issues for academia, practitioners, and future generation
• Proposal on new research directions as well as survey and retrospectives on mature field.