描述外延生长的指数PDE解的全局稳定性

IF 1.2 4区 数学 Q1 MATHEMATICS
Jian‐Guo Liu, Robert M. Strain
{"title":"描述外延生长的指数PDE解的全局稳定性","authors":"Jian‐Guo Liu, Robert M. Strain","doi":"10.4171/IFB/417","DOIUrl":null,"url":null,"abstract":"In this paper we prove the global existence, uniqueness, optimal large time decay rates, and uniform gain of analyticity for the exponential PDE $h_t=\\Delta e^{-\\Delta h}$ in the whole space $\\mathbb{R}^d_x$. We assume the initial data is of medium size in the critical Wiener algebra $\\Delta h \\in A(\\mathbb{R}^d)$. This exponential PDE was derived in (Krug, Dobbs, and Majaniemi in 1995) and more recently in (Marzuola and Weare 2013).","PeriodicalId":13863,"journal":{"name":"Interfaces and Free Boundaries","volume":"34 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2018-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Global stability for solutions to the exponential PDE describing epitaxial growth\",\"authors\":\"Jian‐Guo Liu, Robert M. Strain\",\"doi\":\"10.4171/IFB/417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we prove the global existence, uniqueness, optimal large time decay rates, and uniform gain of analyticity for the exponential PDE $h_t=\\\\Delta e^{-\\\\Delta h}$ in the whole space $\\\\mathbb{R}^d_x$. We assume the initial data is of medium size in the critical Wiener algebra $\\\\Delta h \\\\in A(\\\\mathbb{R}^d)$. This exponential PDE was derived in (Krug, Dobbs, and Majaniemi in 1995) and more recently in (Marzuola and Weare 2013).\",\"PeriodicalId\":13863,\"journal\":{\"name\":\"Interfaces and Free Boundaries\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2018-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interfaces and Free Boundaries\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/IFB/417\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interfaces and Free Boundaries","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/IFB/417","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 20

摘要

本文证明了指数函数PDE $h_t=\Delta e^{-\Delta h}$在整个空间$\mathbb{R}^d_x$上的全局存在性、唯一性、最优大时间衰减率和均匀可解析性增益。我们假设初始数据在临界维纳代数$\Delta h \in A(\mathbb{R}^d)$中具有中等大小。指数偏微分方程是由(Krug, Dobbs, and Majaniemi, 1995)和(Marzuola and Weare, 2013)导出的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global stability for solutions to the exponential PDE describing epitaxial growth
In this paper we prove the global existence, uniqueness, optimal large time decay rates, and uniform gain of analyticity for the exponential PDE $h_t=\Delta e^{-\Delta h}$ in the whole space $\mathbb{R}^d_x$. We assume the initial data is of medium size in the critical Wiener algebra $\Delta h \in A(\mathbb{R}^d)$. This exponential PDE was derived in (Krug, Dobbs, and Majaniemi in 1995) and more recently in (Marzuola and Weare 2013).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
17
审稿时长
>12 weeks
期刊介绍: Interfaces and Free Boundaries is dedicated to the mathematical modelling, analysis and computation of interfaces and free boundary problems in all areas where such phenomena are pertinent. The journal aims to be a forum where mathematical analysis, partial differential equations, modelling, scientific computing and the various applications which involve mathematical modelling meet. Submissions should, ideally, emphasize the combination of theory and application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信