锥形壳的热应力分析

F.J. Witt
{"title":"锥形壳的热应力分析","authors":"F.J. Witt","doi":"10.1016/0369-5816(65)90147-X","DOIUrl":null,"url":null,"abstract":"<div><p>The differential equation of a conical shell subjected to axisymmetrical temperature distributions is derived. The temperature distributions may vary in the meridional direction and linearly through the thickness. In order to obtain a particular solution to the differential equation, the expression for the temperature distributions is assumed to be the sum of hyperbolic and cubic functions. The particular solution is superposed on the homogeneous solution and all the formulae for a complete analysis are given.</p></div>","PeriodicalId":100973,"journal":{"name":"Nuclear Structural Engineering","volume":"1 5","pages":"Pages 449-456"},"PeriodicalIF":0.0000,"publicationDate":"1965-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0369-5816(65)90147-X","citationCount":"6","resultStr":"{\"title\":\"Thermal stress analysis of conical shells\",\"authors\":\"F.J. Witt\",\"doi\":\"10.1016/0369-5816(65)90147-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The differential equation of a conical shell subjected to axisymmetrical temperature distributions is derived. The temperature distributions may vary in the meridional direction and linearly through the thickness. In order to obtain a particular solution to the differential equation, the expression for the temperature distributions is assumed to be the sum of hyperbolic and cubic functions. The particular solution is superposed on the homogeneous solution and all the formulae for a complete analysis are given.</p></div>\",\"PeriodicalId\":100973,\"journal\":{\"name\":\"Nuclear Structural Engineering\",\"volume\":\"1 5\",\"pages\":\"Pages 449-456\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1965-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0369-5816(65)90147-X\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Structural Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/036958166590147X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Structural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/036958166590147X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

导出了轴对称温度分布作用下锥形壳体的微分方程。温度分布沿子午方向变化,并随厚度呈线性变化。为了得到微分方程的特解,温度分布的表达式假定为双曲函数和三次函数的和。将特解叠加在齐次解上,给出了完整分析的所有公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermal stress analysis of conical shells

The differential equation of a conical shell subjected to axisymmetrical temperature distributions is derived. The temperature distributions may vary in the meridional direction and linearly through the thickness. In order to obtain a particular solution to the differential equation, the expression for the temperature distributions is assumed to be the sum of hyperbolic and cubic functions. The particular solution is superposed on the homogeneous solution and all the formulae for a complete analysis are given.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信