T. Mon, Z. Ghazalli, A. H. Ahmad, M. F. Ismail, Khairul Fikri Muhamad
{"title":"基于有限元法的静电梳状执行器设计","authors":"T. Mon, Z. Ghazalli, A. H. Ahmad, M. F. Ismail, Khairul Fikri Muhamad","doi":"10.1109/ESCINANO.2010.5700957","DOIUrl":null,"url":null,"abstract":"Electrostatic comb actuators are commonly used to provide displacement-invariant force in micro electro-mechanical system (MEMS). Major application can be found in resonator, inertial sensor, accelerometer, and gyroscope. The size of the comb may be a few microns to millimeters. Principally, the electrostatic force is produced in the comb structure due to potential difference between the electrodes, which is used to actuate the system attached to it [1]. The higher forces are very often desirable for high sensitivity and performance. However to meet this demand, micro-scaled structures are very often fabricated on trial-error basis because of lack of well-established fabrication method. In this situation, designing on a computer prior to the actual fabrication would be very helpful. Moreover, in a virtual device, parameters can be changed much more quickly than trial-and-error fabrication reducing the time to market and also the cost to develop a commercial device considerably [2].","PeriodicalId":6354,"journal":{"name":"2010 International Conference on Enabling Science and Nanotechnology (ESciNano)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Design of electrostatic comb actuators based on finite element method\",\"authors\":\"T. Mon, Z. Ghazalli, A. H. Ahmad, M. F. Ismail, Khairul Fikri Muhamad\",\"doi\":\"10.1109/ESCINANO.2010.5700957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrostatic comb actuators are commonly used to provide displacement-invariant force in micro electro-mechanical system (MEMS). Major application can be found in resonator, inertial sensor, accelerometer, and gyroscope. The size of the comb may be a few microns to millimeters. Principally, the electrostatic force is produced in the comb structure due to potential difference between the electrodes, which is used to actuate the system attached to it [1]. The higher forces are very often desirable for high sensitivity and performance. However to meet this demand, micro-scaled structures are very often fabricated on trial-error basis because of lack of well-established fabrication method. In this situation, designing on a computer prior to the actual fabrication would be very helpful. Moreover, in a virtual device, parameters can be changed much more quickly than trial-and-error fabrication reducing the time to market and also the cost to develop a commercial device considerably [2].\",\"PeriodicalId\":6354,\"journal\":{\"name\":\"2010 International Conference on Enabling Science and Nanotechnology (ESciNano)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Enabling Science and Nanotechnology (ESciNano)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESCINANO.2010.5700957\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Enabling Science and Nanotechnology (ESciNano)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESCINANO.2010.5700957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of electrostatic comb actuators based on finite element method
Electrostatic comb actuators are commonly used to provide displacement-invariant force in micro electro-mechanical system (MEMS). Major application can be found in resonator, inertial sensor, accelerometer, and gyroscope. The size of the comb may be a few microns to millimeters. Principally, the electrostatic force is produced in the comb structure due to potential difference between the electrodes, which is used to actuate the system attached to it [1]. The higher forces are very often desirable for high sensitivity and performance. However to meet this demand, micro-scaled structures are very often fabricated on trial-error basis because of lack of well-established fabrication method. In this situation, designing on a computer prior to the actual fabrication would be very helpful. Moreover, in a virtual device, parameters can be changed much more quickly than trial-and-error fabrication reducing the time to market and also the cost to develop a commercial device considerably [2].