{"title":"关于黎曼函数的泛函独立性","authors":"V. Garbaliauskienė, R. Macaitienė, D. Šiaučiūnas","doi":"10.3846/mma.2023.17157","DOIUrl":null,"url":null,"abstract":"In 1973, Voronin proved the functional independence of the Riemann zeta-function ζ(s), i.e., that ζ(s) and its derivatives do not satisfy a certain equation with continuous functions. In the paper, we obtain a joint version of the Voronin theorem.","PeriodicalId":49861,"journal":{"name":"Mathematical Modelling and Analysis","volume":"57 1","pages":"352-359"},"PeriodicalIF":1.6000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Functional Independence of the Riemann zeta-function\",\"authors\":\"V. Garbaliauskienė, R. Macaitienė, D. Šiaučiūnas\",\"doi\":\"10.3846/mma.2023.17157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 1973, Voronin proved the functional independence of the Riemann zeta-function ζ(s), i.e., that ζ(s) and its derivatives do not satisfy a certain equation with continuous functions. In the paper, we obtain a joint version of the Voronin theorem.\",\"PeriodicalId\":49861,\"journal\":{\"name\":\"Mathematical Modelling and Analysis\",\"volume\":\"57 1\",\"pages\":\"352-359\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Modelling and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3846/mma.2023.17157\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling and Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3846/mma.2023.17157","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the Functional Independence of the Riemann zeta-function
In 1973, Voronin proved the functional independence of the Riemann zeta-function ζ(s), i.e., that ζ(s) and its derivatives do not satisfy a certain equation with continuous functions. In the paper, we obtain a joint version of the Voronin theorem.