{"title":"p(x) -拉普拉斯方程的拓扑度弱解的存在性","authors":"M. Ait Hammou, E. Rami","doi":"10.35634/2226-3594-2022-59-02","DOIUrl":null,"url":null,"abstract":"We consider the $p(x)$-Laplacian equation with a Dirichlet boundary value condition $$ \\begin{cases} -\\Delta_{p(x)}(u)+|u|^{p(x)-2}u= g(x,u,\\nabla u), &x\\in\\Omega,\\\\ u=0, &x\\in\\partial\\Omega. \\end{cases} $$ Using the topological degree constructed by Berkovits, we prove, under appropriate assumptions, the existence of weak solutions for this equation.","PeriodicalId":42053,"journal":{"name":"Izvestiya Instituta Matematiki i Informatiki-Udmurtskogo Gosudarstvennogo Universiteta","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of weak solutions for a $p(x)$-Laplacian equation via topological degree\",\"authors\":\"M. Ait Hammou, E. Rami\",\"doi\":\"10.35634/2226-3594-2022-59-02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the $p(x)$-Laplacian equation with a Dirichlet boundary value condition $$ \\\\begin{cases} -\\\\Delta_{p(x)}(u)+|u|^{p(x)-2}u= g(x,u,\\\\nabla u), &x\\\\in\\\\Omega,\\\\\\\\ u=0, &x\\\\in\\\\partial\\\\Omega. \\\\end{cases} $$ Using the topological degree constructed by Berkovits, we prove, under appropriate assumptions, the existence of weak solutions for this equation.\",\"PeriodicalId\":42053,\"journal\":{\"name\":\"Izvestiya Instituta Matematiki i Informatiki-Udmurtskogo Gosudarstvennogo Universiteta\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Instituta Matematiki i Informatiki-Udmurtskogo Gosudarstvennogo Universiteta\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35634/2226-3594-2022-59-02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Instituta Matematiki i Informatiki-Udmurtskogo Gosudarstvennogo Universiteta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35634/2226-3594-2022-59-02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Existence of weak solutions for a $p(x)$-Laplacian equation via topological degree
We consider the $p(x)$-Laplacian equation with a Dirichlet boundary value condition $$ \begin{cases} -\Delta_{p(x)}(u)+|u|^{p(x)-2}u= g(x,u,\nabla u), &x\in\Omega,\\ u=0, &x\in\partial\Omega. \end{cases} $$ Using the topological degree constructed by Berkovits, we prove, under appropriate assumptions, the existence of weak solutions for this equation.