通过p-电阻的保形尺寸:Sierpinski地毯

IF 0.9 4区 数学 Q2 Mathematics
J. Kwapisz
{"title":"通过p-电阻的保形尺寸:Sierpinski地毯","authors":"J. Kwapisz","doi":"10.5186/aasfm.2020.4515","DOIUrl":null,"url":null,"abstract":"We put forth the notion of p-resistance as a proxy for the combinatorial p-modulus and demonstrate its effectiveness by studying the (Ahlfors regular) conformal dimension of the Sierpiński carpet. Specifically, we construct large resistor network approximating the carpet, establish weak-sup and sub-multiplicativity of their p-resistances, identify the conformal dimension as the associated critical exponent, and provide numerical approximations and rigorous two-sided bounds. In particular, we prove that the conformal dimension of the carpet exceeds 1 + ln 2/ ln 3, the Hausdorff dimension of the Cantor comb contained therein. A conjectural construction (and a numerical picture) of the quasi-symmetric uniformization of the carpet emerges as a byproduct.","PeriodicalId":50787,"journal":{"name":"Annales Academiae Scientiarum Fennicae-Mathematica","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Conformal dimension via p-resistance: Sierpinski carpet\",\"authors\":\"J. Kwapisz\",\"doi\":\"10.5186/aasfm.2020.4515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We put forth the notion of p-resistance as a proxy for the combinatorial p-modulus and demonstrate its effectiveness by studying the (Ahlfors regular) conformal dimension of the Sierpiński carpet. Specifically, we construct large resistor network approximating the carpet, establish weak-sup and sub-multiplicativity of their p-resistances, identify the conformal dimension as the associated critical exponent, and provide numerical approximations and rigorous two-sided bounds. In particular, we prove that the conformal dimension of the carpet exceeds 1 + ln 2/ ln 3, the Hausdorff dimension of the Cantor comb contained therein. A conjectural construction (and a numerical picture) of the quasi-symmetric uniformization of the carpet emerges as a byproduct.\",\"PeriodicalId\":50787,\"journal\":{\"name\":\"Annales Academiae Scientiarum Fennicae-Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Academiae Scientiarum Fennicae-Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5186/aasfm.2020.4515\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Academiae Scientiarum Fennicae-Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5186/aasfm.2020.4515","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 8

摘要

我们提出了p-阻力作为组合p-模量的代理概念,并通过研究Sierpiński地毯的(Ahlfors规则)保形尺寸来证明其有效性。具体而言,我们构建了近似地毯的大型电阻网络,建立了它们的p电阻的弱sup和次乘法性,确定了保形维数作为相关的临界指数,并提供了数值近似和严格的双边边界。特别地,我们证明了地毯的保形尺寸超过其中包含的康托梳的豪斯多夫维数1 + ln 2/ ln 3。地毯准对称均匀化的推测构造(和数值图像)作为副产品出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conformal dimension via p-resistance: Sierpinski carpet
We put forth the notion of p-resistance as a proxy for the combinatorial p-modulus and demonstrate its effectiveness by studying the (Ahlfors regular) conformal dimension of the Sierpiński carpet. Specifically, we construct large resistor network approximating the carpet, establish weak-sup and sub-multiplicativity of their p-resistances, identify the conformal dimension as the associated critical exponent, and provide numerical approximations and rigorous two-sided bounds. In particular, we prove that the conformal dimension of the carpet exceeds 1 + ln 2/ ln 3, the Hausdorff dimension of the Cantor comb contained therein. A conjectural construction (and a numerical picture) of the quasi-symmetric uniformization of the carpet emerges as a byproduct.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Annales Academiæ Scientiarum Fennicæ Mathematica is published by Academia Scientiarum Fennica since 1941. It was founded and edited, until 1974, by P.J. Myrberg. Its editor is Olli Martio. AASF publishes refereed papers in all fields of mathematics with emphasis on analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信