迪克西杯问题与FKG不等式

High Frequency Pub Date : 2020-01-26 DOI:10.1002/hf2.10048
Leopold Flatto
{"title":"迪克西杯问题与FKG不等式","authors":"Leopold Flatto","doi":"10.1002/hf2.10048","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Let <math>\n <mrow>\n <msub>\n <mi>T</mi>\n <mi>m</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n </mrow></math> be the number of purchases required to obtain <math>\n <mi>m</mi></math> copies of <math>\n <mi>n</mi></math> given items, each purchase choosing at random one of the <math>\n <mi>n</mi></math> items. <math>\n <mrow>\n <msub>\n <mi>E</mi>\n <mi>m</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n </mrow></math> is the expected value of the random variable <math>\n <mrow>\n <msub>\n <mi>T</mi>\n <mi>m</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n </mrow></math>. The problem of obtaining a formula for <math>\n <mrow>\n <msub>\n <mi>E</mi>\n <mi>m</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n </mrow></math> is known as the dixie cup problem. The problem is easy for <math>\n <mrow>\n <mi>m</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow></math>, but difficult for <i>m</i> &gt; 1. Newman and Shepp solve the problem for all <i>m</i>,<i> n</i>. From the formula, they obtain the asymptotics of <math>\n <mrow>\n <msub>\n <mi>E</mi>\n <mi>m</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n </mrow></math> for each fixed <math>\n <mi>m</mi></math> and <math>\n <mi>n</mi></math> tending to infinity. Later, Erdös and Rényi obtain the limit law for <math>\n <mrow>\n <msub>\n <mi>T</mi>\n <mi>m</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n </mrow></math>, for each fixed <math>\n <mi>m</mi></math> and <math>\n <mi>n</mi></math> tending to infinity. From the limit law, they also derive and improve on the result of Newman and Shepp. The derivation is however incomplete, as they do not address the problem of estimating the tails of the distribution of <math>\n <mrow>\n <msub>\n <mi>T</mi>\n <mi>m</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n </mrow></math>. In this paper, we provide the estimates. The estimates depend on notions concerning conditional probabilities. In particular, we use the FKG inequality, a correlation inequality which is a fundamental tool in statistical mechanics and probabilistic combinatorics.</p>\n </div>","PeriodicalId":100604,"journal":{"name":"High Frequency","volume":"2 3-4","pages":"169-174"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/hf2.10048","citationCount":"2","resultStr":"{\"title\":\"The dixie cup problem and FKG inequality\",\"authors\":\"Leopold Flatto\",\"doi\":\"10.1002/hf2.10048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Let <math>\\n <mrow>\\n <msub>\\n <mi>T</mi>\\n <mi>m</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow></math> be the number of purchases required to obtain <math>\\n <mi>m</mi></math> copies of <math>\\n <mi>n</mi></math> given items, each purchase choosing at random one of the <math>\\n <mi>n</mi></math> items. <math>\\n <mrow>\\n <msub>\\n <mi>E</mi>\\n <mi>m</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow></math> is the expected value of the random variable <math>\\n <mrow>\\n <msub>\\n <mi>T</mi>\\n <mi>m</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow></math>. The problem of obtaining a formula for <math>\\n <mrow>\\n <msub>\\n <mi>E</mi>\\n <mi>m</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow></math> is known as the dixie cup problem. The problem is easy for <math>\\n <mrow>\\n <mi>m</mi>\\n <mo>=</mo>\\n <mn>1</mn>\\n </mrow></math>, but difficult for <i>m</i> &gt; 1. Newman and Shepp solve the problem for all <i>m</i>,<i> n</i>. From the formula, they obtain the asymptotics of <math>\\n <mrow>\\n <msub>\\n <mi>E</mi>\\n <mi>m</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow></math> for each fixed <math>\\n <mi>m</mi></math> and <math>\\n <mi>n</mi></math> tending to infinity. Later, Erdös and Rényi obtain the limit law for <math>\\n <mrow>\\n <msub>\\n <mi>T</mi>\\n <mi>m</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow></math>, for each fixed <math>\\n <mi>m</mi></math> and <math>\\n <mi>n</mi></math> tending to infinity. From the limit law, they also derive and improve on the result of Newman and Shepp. The derivation is however incomplete, as they do not address the problem of estimating the tails of the distribution of <math>\\n <mrow>\\n <msub>\\n <mi>T</mi>\\n <mi>m</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow></math>. In this paper, we provide the estimates. The estimates depend on notions concerning conditional probabilities. In particular, we use the FKG inequality, a correlation inequality which is a fundamental tool in statistical mechanics and probabilistic combinatorics.</p>\\n </div>\",\"PeriodicalId\":100604,\"journal\":{\"name\":\"High Frequency\",\"volume\":\"2 3-4\",\"pages\":\"169-174\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/hf2.10048\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Frequency\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hf2.10048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Frequency","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hf2.10048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

让T m (n)成为要求购买的数字E m是随机变量的估计值T m。显然,解决E m配方的问题就被称为迪克西杯。问题很容易得到m = 1,但对于m >来说很难1. 从公式上看,纽曼和谢普解决了所有m的问题,他们指出了每一个m和向无限延伸的E m的复杂性。后来,Erdos和Renyi为T (n)、每一个固定的m和伸展到无穷。从法律的限制来看,他们也在纽曼和领带的代表下成长和成长。痛苦是不完整的,因为他们不清楚确定T m分布的尾巴的问题。在这篇文章里,我们保守的。。调查结果:在参与者中,我们使用了FKG的不平等,一种相关的不平等,这是统计机制和现实科学的基本工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The dixie cup problem and FKG inequality

Let T m ( n ) be the number of purchases required to obtain m copies of n given items, each purchase choosing at random one of the n items. E m ( n ) is the expected value of the random variable T m ( n ) . The problem of obtaining a formula for E m ( n ) is known as the dixie cup problem. The problem is easy for m = 1 , but difficult for m > 1. Newman and Shepp solve the problem for all m, n. From the formula, they obtain the asymptotics of E m ( n ) for each fixed m and n tending to infinity. Later, Erdös and Rényi obtain the limit law for T m ( n ) , for each fixed m and n tending to infinity. From the limit law, they also derive and improve on the result of Newman and Shepp. The derivation is however incomplete, as they do not address the problem of estimating the tails of the distribution of T m ( n ) . In this paper, we provide the estimates. The estimates depend on notions concerning conditional probabilities. In particular, we use the FKG inequality, a correlation inequality which is a fundamental tool in statistical mechanics and probabilistic combinatorics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信