用Hamilton-Jacobi方法分析线性化Weyl重力

IF 1.1 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
A. Escalante, Víctor Alberto Zavala-Pérez
{"title":"用Hamilton-Jacobi方法分析线性化Weyl重力","authors":"A. Escalante, Víctor Alberto Zavala-Pérez","doi":"10.1139/cjp-2023-0028","DOIUrl":null,"url":null,"abstract":"The Hamilton-Jacobi formalism is used to analyze the Weyl theory in the weak-field limit. The complete set of involutive Hamiltonians is obtained, which are classified into involutive and non-involutive. The counting of degrees of freedom is performed. Additionally, the generalized brackets and gauge symmetries are reported.","PeriodicalId":9413,"journal":{"name":"Canadian Journal of Physics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of linearized Weyl gravity via the Hamilton-Jacobi method\",\"authors\":\"A. Escalante, Víctor Alberto Zavala-Pérez\",\"doi\":\"10.1139/cjp-2023-0028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Hamilton-Jacobi formalism is used to analyze the Weyl theory in the weak-field limit. The complete set of involutive Hamiltonians is obtained, which are classified into involutive and non-involutive. The counting of degrees of freedom is performed. Additionally, the generalized brackets and gauge symmetries are reported.\",\"PeriodicalId\":9413,\"journal\":{\"name\":\"Canadian Journal of Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1139/cjp-2023-0028\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1139/cjp-2023-0028","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利用Hamilton-Jacobi形式分析了弱场极限下的Weyl理论。得到了对合哈密顿算子的完备集,并将其分为对合哈密顿算子和非对合哈密顿算子。执行自由度的计数。此外,还报道了广义括号和规范对称。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of linearized Weyl gravity via the Hamilton-Jacobi method
The Hamilton-Jacobi formalism is used to analyze the Weyl theory in the weak-field limit. The complete set of involutive Hamiltonians is obtained, which are classified into involutive and non-involutive. The counting of degrees of freedom is performed. Additionally, the generalized brackets and gauge symmetries are reported.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Canadian Journal of Physics
Canadian Journal of Physics 物理-物理:综合
CiteScore
2.30
自引率
8.30%
发文量
65
审稿时长
1.7 months
期刊介绍: The Canadian Journal of Physics publishes research articles, rapid communications, and review articles that report significant advances in research in physics, including atomic and molecular physics; condensed matter; elementary particles and fields; nuclear physics; gases, fluid dynamics, and plasmas; electromagnetism and optics; mathematical physics; interdisciplinary, classical, and applied physics; relativity and cosmology; physics education research; statistical mechanics and thermodynamics; quantum physics and quantum computing; gravitation and string theory; biophysics; aeronomy and space physics; and astrophysics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信