网络聚类e-质量函数的若干性质

Q3 Decision Sciences
Dušan Džamić
{"title":"网络聚类e-质量函数的若干性质","authors":"Dušan Džamić","doi":"10.2298/yjor191215031d","DOIUrl":null,"url":null,"abstract":"One of the most important properties of graphs that represents real complex systems is community structure, or clustering, i.e., organizing vertices in cohesive groups with high concentration of edges within individual groups and low concentration of edges between vertices in different groups. In this paper, we analyze Exponential Quality function for network clustering. We consider different classes of artificial networks from literature and analyze whether the maximization of Exponential Quality function tends to merge or split clusters in optimal partition even if they are unambiguously defined. Our theoretical results show that Exponential Quality function detects the expected and reasonable clusters in all classes of instances and the Modularity function does not.","PeriodicalId":52438,"journal":{"name":"Yugoslav Journal of Operations Research","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some properties of e-quality function for network clustering\",\"authors\":\"Dušan Džamić\",\"doi\":\"10.2298/yjor191215031d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the most important properties of graphs that represents real complex systems is community structure, or clustering, i.e., organizing vertices in cohesive groups with high concentration of edges within individual groups and low concentration of edges between vertices in different groups. In this paper, we analyze Exponential Quality function for network clustering. We consider different classes of artificial networks from literature and analyze whether the maximization of Exponential Quality function tends to merge or split clusters in optimal partition even if they are unambiguously defined. Our theoretical results show that Exponential Quality function detects the expected and reasonable clusters in all classes of instances and the Modularity function does not.\",\"PeriodicalId\":52438,\"journal\":{\"name\":\"Yugoslav Journal of Operations Research\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Yugoslav Journal of Operations Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/yjor191215031d\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Yugoslav Journal of Operations Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/yjor191215031d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

摘要

表示真正复杂系统的图的最重要的性质之一是群落结构,或聚类,即在单个组内具有高浓度边和不同组中顶点之间低浓度边的内聚群中组织顶点。本文分析了网络聚类的指数质量函数。我们考虑了文献中不同类别的人工网络,并分析了指数质量函数的最大化是否倾向于在最优划分中合并或分裂聚类,即使它们是明确定义的。我们的理论结果表明,指数质量函数在所有类别的实例中都能检测到期望的和合理的聚类,而模块化函数则不能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some properties of e-quality function for network clustering
One of the most important properties of graphs that represents real complex systems is community structure, or clustering, i.e., organizing vertices in cohesive groups with high concentration of edges within individual groups and low concentration of edges between vertices in different groups. In this paper, we analyze Exponential Quality function for network clustering. We consider different classes of artificial networks from literature and analyze whether the maximization of Exponential Quality function tends to merge or split clusters in optimal partition even if they are unambiguously defined. Our theoretical results show that Exponential Quality function detects the expected and reasonable clusters in all classes of instances and the Modularity function does not.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Yugoslav Journal of Operations Research
Yugoslav Journal of Operations Research Decision Sciences-Management Science and Operations Research
CiteScore
2.50
自引率
0.00%
发文量
14
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信