{"title":"银微粒增强聚甲基丙烯酸甲酯中银离子释放的体外研究","authors":"Aashritha Shenava","doi":"10.2174/2210681213666230413090403","DOIUrl":null,"url":null,"abstract":"Despite the awareness among patients with complete dentures, the risk factor for developing denture related candidiasis is when it is not removed during sleep and cleaned regularly. The routine treatment is an antifungal application, but frequent infection is seen after treatment. Nanotechnology has led the medical field to a cutting edge in most of the treatment aspects of various conditions. Moreover, the assimilation of silver nanoparticles into the polymer can be useful as an antifungal agent. To assess the antifungal efficacy of AgNP’s/ PMMA (silver nanoparticles /polymethlmethacrylate) against Candida albicansstrain and to evaluate the continuous release of silver ions which would increase antifungal mechanism.\n\n\n\nChemical methods of synthesis of silver nanoparticles using metal precursors, reducing agents, and stabilizing agents were used because of its convenience and simple equipment. MIC (minimum inhibitory concentration) was evaluated along with antifungal efficacy by incorporating PMMA (polymethylmethacrylate) discs with silver nanoparticles. Silver ion release was carried out by immersing the PMMA/Ag discs in deionised water for different immersion periods.\n\n\n\nTo assess the antifungal efficacy of AgNP’s/ PMMA (silver nanoparticles /polymethlmethacrylate) against Candida albicans strain and to evaluate the continous release of silver ions which would increase the antifungal mechanisn .\n\n\n\nIn the Independent Sample ‘t’ test, the comparison of optical density between the study groups at 6 months at absorbance A230, A260,A280, A320, A420, and A550 was statistically significant(p<0.05).\n\n\n\nChemical method of synthesis of silver nanoparticles using metal precursors,reducing agents and stabilizing agents were used because of its convenience and simple equipment. MIC (minimum inhibitory concentration ) was evaluated along with antifungal efficacy by incorporating PMMA (polymethylmethacrylate) discs with silver nanoparticles. Silver ion release was carried out by immersing the PMMA/Ag discs in deionised water for different immersion periods\n\n\n\nSilver Nanoparticles could be prepared which is cost-effective and can serve as an antifungal agent against Candida albicans. Silver ion release was seen with AgNP’s /PMMA (SilverNanoparticle /polymethylmethacrylate) at 6 months and Group A ( .06M) and Group B (.03 M) was confirmed to be used as an antifungal agent.\n\n\n\nSilver Nanoparticles could be prepared which is cost effective and can serve as an antifungal agent against Candida albicans. Silver ion release was seen with AgNP’s /PMMA (SilverNanoparticle /polymethylmethacrylate) at 6 months and Group A( .06M) and Group B ( .03 M)was confirmed to be used as an antifungal agent.","PeriodicalId":38913,"journal":{"name":"Nanoscience and Nanotechnology - Asia","volume":"74 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Silver Ion Release from Polymethylmethacrylate Reinforced with Silvernanoparticles-An In vitro Study\",\"authors\":\"Aashritha Shenava\",\"doi\":\"10.2174/2210681213666230413090403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite the awareness among patients with complete dentures, the risk factor for developing denture related candidiasis is when it is not removed during sleep and cleaned regularly. The routine treatment is an antifungal application, but frequent infection is seen after treatment. Nanotechnology has led the medical field to a cutting edge in most of the treatment aspects of various conditions. Moreover, the assimilation of silver nanoparticles into the polymer can be useful as an antifungal agent. To assess the antifungal efficacy of AgNP’s/ PMMA (silver nanoparticles /polymethlmethacrylate) against Candida albicansstrain and to evaluate the continuous release of silver ions which would increase antifungal mechanism.\\n\\n\\n\\nChemical methods of synthesis of silver nanoparticles using metal precursors, reducing agents, and stabilizing agents were used because of its convenience and simple equipment. MIC (minimum inhibitory concentration) was evaluated along with antifungal efficacy by incorporating PMMA (polymethylmethacrylate) discs with silver nanoparticles. Silver ion release was carried out by immersing the PMMA/Ag discs in deionised water for different immersion periods.\\n\\n\\n\\nTo assess the antifungal efficacy of AgNP’s/ PMMA (silver nanoparticles /polymethlmethacrylate) against Candida albicans strain and to evaluate the continous release of silver ions which would increase the antifungal mechanisn .\\n\\n\\n\\nIn the Independent Sample ‘t’ test, the comparison of optical density between the study groups at 6 months at absorbance A230, A260,A280, A320, A420, and A550 was statistically significant(p<0.05).\\n\\n\\n\\nChemical method of synthesis of silver nanoparticles using metal precursors,reducing agents and stabilizing agents were used because of its convenience and simple equipment. MIC (minimum inhibitory concentration ) was evaluated along with antifungal efficacy by incorporating PMMA (polymethylmethacrylate) discs with silver nanoparticles. Silver ion release was carried out by immersing the PMMA/Ag discs in deionised water for different immersion periods\\n\\n\\n\\nSilver Nanoparticles could be prepared which is cost-effective and can serve as an antifungal agent against Candida albicans. Silver ion release was seen with AgNP’s /PMMA (SilverNanoparticle /polymethylmethacrylate) at 6 months and Group A ( .06M) and Group B (.03 M) was confirmed to be used as an antifungal agent.\\n\\n\\n\\nSilver Nanoparticles could be prepared which is cost effective and can serve as an antifungal agent against Candida albicans. Silver ion release was seen with AgNP’s /PMMA (SilverNanoparticle /polymethylmethacrylate) at 6 months and Group A( .06M) and Group B ( .03 M)was confirmed to be used as an antifungal agent.\",\"PeriodicalId\":38913,\"journal\":{\"name\":\"Nanoscience and Nanotechnology - Asia\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscience and Nanotechnology - Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/2210681213666230413090403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscience and Nanotechnology - Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2210681213666230413090403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Silver Ion Release from Polymethylmethacrylate Reinforced with Silvernanoparticles-An In vitro Study
Despite the awareness among patients with complete dentures, the risk factor for developing denture related candidiasis is when it is not removed during sleep and cleaned regularly. The routine treatment is an antifungal application, but frequent infection is seen after treatment. Nanotechnology has led the medical field to a cutting edge in most of the treatment aspects of various conditions. Moreover, the assimilation of silver nanoparticles into the polymer can be useful as an antifungal agent. To assess the antifungal efficacy of AgNP’s/ PMMA (silver nanoparticles /polymethlmethacrylate) against Candida albicansstrain and to evaluate the continuous release of silver ions which would increase antifungal mechanism.
Chemical methods of synthesis of silver nanoparticles using metal precursors, reducing agents, and stabilizing agents were used because of its convenience and simple equipment. MIC (minimum inhibitory concentration) was evaluated along with antifungal efficacy by incorporating PMMA (polymethylmethacrylate) discs with silver nanoparticles. Silver ion release was carried out by immersing the PMMA/Ag discs in deionised water for different immersion periods.
To assess the antifungal efficacy of AgNP’s/ PMMA (silver nanoparticles /polymethlmethacrylate) against Candida albicans strain and to evaluate the continous release of silver ions which would increase the antifungal mechanisn .
In the Independent Sample ‘t’ test, the comparison of optical density between the study groups at 6 months at absorbance A230, A260,A280, A320, A420, and A550 was statistically significant(p<0.05).
Chemical method of synthesis of silver nanoparticles using metal precursors,reducing agents and stabilizing agents were used because of its convenience and simple equipment. MIC (minimum inhibitory concentration ) was evaluated along with antifungal efficacy by incorporating PMMA (polymethylmethacrylate) discs with silver nanoparticles. Silver ion release was carried out by immersing the PMMA/Ag discs in deionised water for different immersion periods
Silver Nanoparticles could be prepared which is cost-effective and can serve as an antifungal agent against Candida albicans. Silver ion release was seen with AgNP’s /PMMA (SilverNanoparticle /polymethylmethacrylate) at 6 months and Group A ( .06M) and Group B (.03 M) was confirmed to be used as an antifungal agent.
Silver Nanoparticles could be prepared which is cost effective and can serve as an antifungal agent against Candida albicans. Silver ion release was seen with AgNP’s /PMMA (SilverNanoparticle /polymethylmethacrylate) at 6 months and Group A( .06M) and Group B ( .03 M)was confirmed to be used as an antifungal agent.
期刊介绍:
Nanoscience & Nanotechnology-Asia publishes expert reviews, original research articles, letters and guest edited issues on all the most recent advances in nanoscience and nanotechnology with an emphasis on research in Asia and Japan. All aspects of the field are represented including chemistry, physics, materials science, biology and engineering mainly covering the following; synthesis, characterization, assembly, theory, and simulation of nanostructures (nanomaterials and assemblies, nanodevices, nano-bubbles, nano-droplets, nanofluidics, and self-assembled structures), nanofabrication, nanobiotechnology, nanomedicine and methods and tools for nanoscience and nanotechnology.