{"title":"异质投资组合中最大索赔金额的随机比较","authors":"Pradip Kundu, Amarjit Kundu, Biplab Hawlader","doi":"10.1111/stan.12296","DOIUrl":null,"url":null,"abstract":"This paper investigates stochastic comparisons of largest claim amounts of two sets of independent or interdependent portfolios in the sense of some stochastic orders. Let random variable Xi$$ {X}_i $$ ( i=1,…,n$$ i=1,\\dots, n $$ ) with distribution function F(x;αi)$$ F\\left(x;{\\alpha}_i\\right) $$ , represents the claim amount for ith risk of a portfolio. Here two largest claim amounts are compared considering that the claim variables follow a general semiparametric family of distributions having the property that the survival function F‾(x;α)$$ \\overline{F}\\left(x;\\alpha \\right) $$ is increasing in α$$ \\alpha $$ or is increasing and convex/concave in α$$ \\alpha $$ . The results obtained in this paper apply to a large class of well‐known distributions including the family of exponentiated/generalized distributions (e.g., exponentiated exponential, Weibull, gamma and Pareto family), Rayleigh distribution and Marshall–Olkin family of distributions. As a direct consequence of some main theorems, we also obtained the results for scale family of distributions. Several numerical examples are provided to illustrate the results.","PeriodicalId":51178,"journal":{"name":"Statistica Neerlandica","volume":"75 1","pages":"497 - 515"},"PeriodicalIF":1.4000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stochastic comparisons of largest claim amounts from heterogeneous portfolios\",\"authors\":\"Pradip Kundu, Amarjit Kundu, Biplab Hawlader\",\"doi\":\"10.1111/stan.12296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates stochastic comparisons of largest claim amounts of two sets of independent or interdependent portfolios in the sense of some stochastic orders. Let random variable Xi$$ {X}_i $$ ( i=1,…,n$$ i=1,\\\\dots, n $$ ) with distribution function F(x;αi)$$ F\\\\left(x;{\\\\alpha}_i\\\\right) $$ , represents the claim amount for ith risk of a portfolio. Here two largest claim amounts are compared considering that the claim variables follow a general semiparametric family of distributions having the property that the survival function F‾(x;α)$$ \\\\overline{F}\\\\left(x;\\\\alpha \\\\right) $$ is increasing in α$$ \\\\alpha $$ or is increasing and convex/concave in α$$ \\\\alpha $$ . The results obtained in this paper apply to a large class of well‐known distributions including the family of exponentiated/generalized distributions (e.g., exponentiated exponential, Weibull, gamma and Pareto family), Rayleigh distribution and Marshall–Olkin family of distributions. As a direct consequence of some main theorems, we also obtained the results for scale family of distributions. Several numerical examples are provided to illustrate the results.\",\"PeriodicalId\":51178,\"journal\":{\"name\":\"Statistica Neerlandica\",\"volume\":\"75 1\",\"pages\":\"497 - 515\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistica Neerlandica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/stan.12296\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Neerlandica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/stan.12296","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Stochastic comparisons of largest claim amounts from heterogeneous portfolios
This paper investigates stochastic comparisons of largest claim amounts of two sets of independent or interdependent portfolios in the sense of some stochastic orders. Let random variable Xi$$ {X}_i $$ ( i=1,…,n$$ i=1,\dots, n $$ ) with distribution function F(x;αi)$$ F\left(x;{\alpha}_i\right) $$ , represents the claim amount for ith risk of a portfolio. Here two largest claim amounts are compared considering that the claim variables follow a general semiparametric family of distributions having the property that the survival function F‾(x;α)$$ \overline{F}\left(x;\alpha \right) $$ is increasing in α$$ \alpha $$ or is increasing and convex/concave in α$$ \alpha $$ . The results obtained in this paper apply to a large class of well‐known distributions including the family of exponentiated/generalized distributions (e.g., exponentiated exponential, Weibull, gamma and Pareto family), Rayleigh distribution and Marshall–Olkin family of distributions. As a direct consequence of some main theorems, we also obtained the results for scale family of distributions. Several numerical examples are provided to illustrate the results.
期刊介绍:
Statistica Neerlandica has been the journal of the Netherlands Society for Statistics and Operations Research since 1946. It covers all areas of statistics, from theoretical to applied, with a special emphasis on mathematical statistics, statistics for the behavioural sciences and biostatistics. This wide scope is reflected by the expertise of the journal’s editors representing these areas. The diverse editorial board is committed to a fast and fair reviewing process, and will judge submissions on quality, correctness, relevance and originality. Statistica Neerlandica encourages transparency and reproducibility, and offers online resources to make data, code, simulation results and other additional materials publicly available.