{"title":"通过加工图分析超级双相不锈钢S32760的热变形行为","authors":"C. Dias, O. Balancin","doi":"10.1590/0370-44672014690176","DOIUrl":null,"url":null,"abstract":"The need for materials with higher strength and corrosion resistance in corrosive environments, such as in the oil extraction in saline media, has led to the use of super duplex stainless steels in projects such as the Pre-sal. The manufacture of these materials involves the step of thermomechanical processing, whose performance depends on the workability of the material. Processing conditions in which the super duplex stainless steel UNS S32760 can be worked safely and in which the material can fail were investigated in this presentation. The physical simulation was performed by means of hot torsion testing. The tests were performed at temperatures ranging from 900°C to 1200°C and strain rates of 0.01s-1 to 10s-1. The evolution of strain rate sensitivity of flow stress (m) for deformation of 0.5 at all temperatures investigated here was determined. After attaining the values of m for each deformation condition, the values of the power dissipation efficiency (η) were calculated, an instability criterion (ξ) was applied, and processing maps were constructed. Using these maps, the effects of deformation conditions on the power dissipation efficiency and the material plastic instability were discussed. The domains of processing maps, the observed microstructures and the shape of plastic flow stress curves were associated.","PeriodicalId":54498,"journal":{"name":"Rem-Revista Escola De Minas","volume":"44 1","pages":"155-160"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Analisys of hot deformation behavior of super duplex stainless steel UNS S32760 through processing maps\",\"authors\":\"C. Dias, O. Balancin\",\"doi\":\"10.1590/0370-44672014690176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The need for materials with higher strength and corrosion resistance in corrosive environments, such as in the oil extraction in saline media, has led to the use of super duplex stainless steels in projects such as the Pre-sal. The manufacture of these materials involves the step of thermomechanical processing, whose performance depends on the workability of the material. Processing conditions in which the super duplex stainless steel UNS S32760 can be worked safely and in which the material can fail were investigated in this presentation. The physical simulation was performed by means of hot torsion testing. The tests were performed at temperatures ranging from 900°C to 1200°C and strain rates of 0.01s-1 to 10s-1. The evolution of strain rate sensitivity of flow stress (m) for deformation of 0.5 at all temperatures investigated here was determined. After attaining the values of m for each deformation condition, the values of the power dissipation efficiency (η) were calculated, an instability criterion (ξ) was applied, and processing maps were constructed. Using these maps, the effects of deformation conditions on the power dissipation efficiency and the material plastic instability were discussed. The domains of processing maps, the observed microstructures and the shape of plastic flow stress curves were associated.\",\"PeriodicalId\":54498,\"journal\":{\"name\":\"Rem-Revista Escola De Minas\",\"volume\":\"44 1\",\"pages\":\"155-160\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rem-Revista Escola De Minas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/0370-44672014690176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rem-Revista Escola De Minas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/0370-44672014690176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Analisys of hot deformation behavior of super duplex stainless steel UNS S32760 through processing maps
The need for materials with higher strength and corrosion resistance in corrosive environments, such as in the oil extraction in saline media, has led to the use of super duplex stainless steels in projects such as the Pre-sal. The manufacture of these materials involves the step of thermomechanical processing, whose performance depends on the workability of the material. Processing conditions in which the super duplex stainless steel UNS S32760 can be worked safely and in which the material can fail were investigated in this presentation. The physical simulation was performed by means of hot torsion testing. The tests were performed at temperatures ranging from 900°C to 1200°C and strain rates of 0.01s-1 to 10s-1. The evolution of strain rate sensitivity of flow stress (m) for deformation of 0.5 at all temperatures investigated here was determined. After attaining the values of m for each deformation condition, the values of the power dissipation efficiency (η) were calculated, an instability criterion (ξ) was applied, and processing maps were constructed. Using these maps, the effects of deformation conditions on the power dissipation efficiency and the material plastic instability were discussed. The domains of processing maps, the observed microstructures and the shape of plastic flow stress curves were associated.
期刊介绍:
REM – International Engineering Journal (antigua REM – Revista Escola de Minas) es la primera revista técnica de Sudamérica. Fue fundada en enero de 1936 por los estudiantes de la Escuela de Minas de Ouro Preto y desde entonces se ha especializado en la publicación de artículos en las áreas de la Ingeniería Civil, Geología, Metalurgia y Materiales y, Minería y Mecánica y Energía.
Su objetivo es servir como un medio de publicación para los trabajos técnicos y científicos originales de investigadores nacionales y extranjeros en esas áreas. Contribuciones originales (artículos y cartas) son aceptadas. Artículos de revisión dependen de la invitación y/o análisis de los Editores.
El envío de artículos para su publicación implica que el trabajo no ha sido publicado previamente, que no está siendo presentado para su publicación en otra revista y no se publicará en otro lugar, en la misma forma, sin el permiso, por escrito, de los Editores/Autores.