基于信念函数的鲁棒优化

M. Goerigk, R. Guillaume, A. Kasperski, Pawel Zieli'nski
{"title":"基于信念函数的鲁棒优化","authors":"M. Goerigk, R. Guillaume, A. Kasperski, Pawel Zieli'nski","doi":"10.48550/arXiv.2303.05067","DOIUrl":null,"url":null,"abstract":"In this paper, an optimization problem with uncertain objective function coefficients is considered. The uncertainty is specified by providing a discrete scenario set, containing possible realizations of the objective function coefficients. The concept of belief function in the traditional and possibilistic setting is applied to define a set of admissible probability distributions over the scenario set. The generalized Hurwicz criterion is then used to compute a solution. In this paper, the complexity of the resulting problem is explored. Some exact and approximation methods of solving it are proposed.","PeriodicalId":13685,"journal":{"name":"Int. J. Approx. Reason.","volume":"24 1","pages":"108941"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust optimization with belief functions\",\"authors\":\"M. Goerigk, R. Guillaume, A. Kasperski, Pawel Zieli'nski\",\"doi\":\"10.48550/arXiv.2303.05067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an optimization problem with uncertain objective function coefficients is considered. The uncertainty is specified by providing a discrete scenario set, containing possible realizations of the objective function coefficients. The concept of belief function in the traditional and possibilistic setting is applied to define a set of admissible probability distributions over the scenario set. The generalized Hurwicz criterion is then used to compute a solution. In this paper, the complexity of the resulting problem is explored. Some exact and approximation methods of solving it are proposed.\",\"PeriodicalId\":13685,\"journal\":{\"name\":\"Int. J. Approx. Reason.\",\"volume\":\"24 1\",\"pages\":\"108941\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Approx. Reason.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2303.05067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Approx. Reason.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2303.05067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一个目标函数系数不确定的优化问题。不确定性通过提供一个包含目标函数系数可能实现的离散场景集来指定。利用传统的可能性设置中的信念函数概念,定义了场景集上的一组可容许概率分布。然后使用广义赫维奇准则来计算解。本文探讨了所得问题的复杂性。提出了求解该问题的精确和近似方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust optimization with belief functions
In this paper, an optimization problem with uncertain objective function coefficients is considered. The uncertainty is specified by providing a discrete scenario set, containing possible realizations of the objective function coefficients. The concept of belief function in the traditional and possibilistic setting is applied to define a set of admissible probability distributions over the scenario set. The generalized Hurwicz criterion is then used to compute a solution. In this paper, the complexity of the resulting problem is explored. Some exact and approximation methods of solving it are proposed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信