实和复积分闭包,Lipschitz等奇异性及其在方阵上的应用

IF 0.4 Q4 MATHEMATICS
T. F. Silva, N. Grulha, M. S. Pereira
{"title":"实和复积分闭包,Lipschitz等奇异性及其在方阵上的应用","authors":"T. F. Silva, N. Grulha, M. S. Pereira","doi":"10.5427/jsing.2020.22o","DOIUrl":null,"url":null,"abstract":"Recently the authors investigated the Lipschitz triviality of simple germs of matrices. In this work, we improve some previous results and we present an extension of an integral closure result for the real setting. These tools are applied to investigate classes of square matrices singularities classified by Bruce and Tari.","PeriodicalId":44411,"journal":{"name":"Journal of Singularities","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2019-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real and complex integral closure, Lipschitz equisingularity and applications on square matrices\",\"authors\":\"T. F. Silva, N. Grulha, M. S. Pereira\",\"doi\":\"10.5427/jsing.2020.22o\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently the authors investigated the Lipschitz triviality of simple germs of matrices. In this work, we improve some previous results and we present an extension of an integral closure result for the real setting. These tools are applied to investigate classes of square matrices singularities classified by Bruce and Tari.\",\"PeriodicalId\":44411,\"journal\":{\"name\":\"Journal of Singularities\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2019-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Singularities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5427/jsing.2020.22o\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Singularities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5427/jsing.2020.22o","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

最近,作者研究了矩阵的简单细菌的Lipschitz平凡性。在这项工作中,我们改进了以前的一些结果,并给出了一个真实情况下的积分闭包结果的推广。这些工具被应用于研究由Bruce和Tari分类的方阵奇点类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real and complex integral closure, Lipschitz equisingularity and applications on square matrices
Recently the authors investigated the Lipschitz triviality of simple germs of matrices. In this work, we improve some previous results and we present an extension of an integral closure result for the real setting. These tools are applied to investigate classes of square matrices singularities classified by Bruce and Tari.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信