随机摄动图中的周期长度

IF 0.9 3区 数学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Elad Aigner-Horev, Dan Hefetz, M. Krivelevich
{"title":"随机摄动图中的周期长度","authors":"Elad Aigner-Horev, Dan Hefetz, M. Krivelevich","doi":"10.1002/rsa.21170","DOIUrl":null,"url":null,"abstract":"Let G$$ G $$ be an n$$ n $$ ‐vertex graph, where δ(G)≥δn$$ \\delta (G)\\ge \\delta n $$ for some δ:=δ(n)$$ \\delta := \\delta (n) $$ . A result of Bohman, Frieze and Martin from 2003 asserts that if α(G)=Oδ2n$$ \\alpha (G)=O\\left({\\delta}^2n\\right) $$ , then perturbing G$$ G $$ via the addition of ωlog(1/δ)δ3$$ \\omega \\left(\\frac{\\log \\left(1/\\delta \\right)}{\\delta^3}\\right) $$ random edges, a.a.s. yields a Hamiltonian graph. We prove several improvements and extensions of the aforementioned result. In particular, keeping the bound on α(G)$$ \\alpha (G) $$ as above and allowing for δ=Ω(n−1/3)$$ \\delta =\\Omega \\left({n}^{-1/3}\\right) $$ , we determine the correct order of magnitude of the number of random edges whose addition to G$$ G $$ a.a.s. yields a pancyclic graph. Moreover, we prove similar results for sparser graphs, and assuming the correctness of Chvátal's toughness conjecture, we handle graphs having larger independent sets. Finally, under milder conditions, we determine the correct order of magnitude of the number of random edges whose addition to G$$ G $$ a.a.s. yields a graph containing an almost spanning cycle.","PeriodicalId":54523,"journal":{"name":"Random Structures & Algorithms","volume":"62 1","pages":"867 - 884"},"PeriodicalIF":0.9000,"publicationDate":"2022-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Cycle lengths in randomly perturbed graphs\",\"authors\":\"Elad Aigner-Horev, Dan Hefetz, M. Krivelevich\",\"doi\":\"10.1002/rsa.21170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let G$$ G $$ be an n$$ n $$ ‐vertex graph, where δ(G)≥δn$$ \\\\delta (G)\\\\ge \\\\delta n $$ for some δ:=δ(n)$$ \\\\delta := \\\\delta (n) $$ . A result of Bohman, Frieze and Martin from 2003 asserts that if α(G)=Oδ2n$$ \\\\alpha (G)=O\\\\left({\\\\delta}^2n\\\\right) $$ , then perturbing G$$ G $$ via the addition of ωlog(1/δ)δ3$$ \\\\omega \\\\left(\\\\frac{\\\\log \\\\left(1/\\\\delta \\\\right)}{\\\\delta^3}\\\\right) $$ random edges, a.a.s. yields a Hamiltonian graph. We prove several improvements and extensions of the aforementioned result. In particular, keeping the bound on α(G)$$ \\\\alpha (G) $$ as above and allowing for δ=Ω(n−1/3)$$ \\\\delta =\\\\Omega \\\\left({n}^{-1/3}\\\\right) $$ , we determine the correct order of magnitude of the number of random edges whose addition to G$$ G $$ a.a.s. yields a pancyclic graph. Moreover, we prove similar results for sparser graphs, and assuming the correctness of Chvátal's toughness conjecture, we handle graphs having larger independent sets. Finally, under milder conditions, we determine the correct order of magnitude of the number of random edges whose addition to G$$ G $$ a.a.s. yields a graph containing an almost spanning cycle.\",\"PeriodicalId\":54523,\"journal\":{\"name\":\"Random Structures & Algorithms\",\"volume\":\"62 1\",\"pages\":\"867 - 884\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Random Structures & Algorithms\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/rsa.21170\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Structures & Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/rsa.21170","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 4

摘要

设G $$ G $$为n $$ n $$‐顶点图,其中δ(G)≥δn $$ \delta (G)\ge \delta n $$对于某些δ:=δ(n) $$ \delta := \delta (n) $$。2003年,Bohman, Frieze和Martin的结果断言,如果α(G)=Oδ2n $$ \alpha (G)=O\left({\delta}^2n\right) $$,那么通过添加ωlog(1/δ)δ3 $$ \omega \left(\frac{\log \left(1/\delta \right)}{\delta^3}\right) $$随机边来扰动G $$ G $$, a.a.s.产生哈密顿图。我们证明了上述结果的一些改进和扩展。特别是,如上所述,保持α(G) $$ \alpha (G) $$的边界并允许δ=Ω(n−1/3)$$ \delta =\Omega \left({n}^{-1/3}\right) $$,我们确定了随机边的数量的正确数量级,这些边加到G $$ G $$ a.a.s.产生一个全环图。此外,我们证明了稀疏图的类似结果,并假设Chvátal的韧性猜想的正确性,我们处理具有更大独立集的图。最后,在较温和的条件下,我们确定了随机边的数量的正确数量级,这些边加上G $$ G $$ a.a.s.会产生一个包含几乎生成循环的图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cycle lengths in randomly perturbed graphs
Let G$$ G $$ be an n$$ n $$ ‐vertex graph, where δ(G)≥δn$$ \delta (G)\ge \delta n $$ for some δ:=δ(n)$$ \delta := \delta (n) $$ . A result of Bohman, Frieze and Martin from 2003 asserts that if α(G)=Oδ2n$$ \alpha (G)=O\left({\delta}^2n\right) $$ , then perturbing G$$ G $$ via the addition of ωlog(1/δ)δ3$$ \omega \left(\frac{\log \left(1/\delta \right)}{\delta^3}\right) $$ random edges, a.a.s. yields a Hamiltonian graph. We prove several improvements and extensions of the aforementioned result. In particular, keeping the bound on α(G)$$ \alpha (G) $$ as above and allowing for δ=Ω(n−1/3)$$ \delta =\Omega \left({n}^{-1/3}\right) $$ , we determine the correct order of magnitude of the number of random edges whose addition to G$$ G $$ a.a.s. yields a pancyclic graph. Moreover, we prove similar results for sparser graphs, and assuming the correctness of Chvátal's toughness conjecture, we handle graphs having larger independent sets. Finally, under milder conditions, we determine the correct order of magnitude of the number of random edges whose addition to G$$ G $$ a.a.s. yields a graph containing an almost spanning cycle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Random Structures & Algorithms
Random Structures & Algorithms 数学-计算机:软件工程
CiteScore
2.50
自引率
10.00%
发文量
56
审稿时长
>12 weeks
期刊介绍: It is the aim of this journal to meet two main objectives: to cover the latest research on discrete random structures, and to present applications of such research to problems in combinatorics and computer science. The goal is to provide a natural home for a significant body of current research, and a useful forum for ideas on future studies in randomness. Results concerning random graphs, hypergraphs, matroids, trees, mappings, permutations, matrices, sets and orders, as well as stochastic graph processes and networks are presented with particular emphasis on the use of probabilistic methods in combinatorics as developed by Paul Erdõs. The journal focuses on probabilistic algorithms, average case analysis of deterministic algorithms, and applications of probabilistic methods to cryptography, data structures, searching and sorting. The journal also devotes space to such areas of probability theory as percolation, random walks and combinatorial aspects of probability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信