Ermenegildo Tomasco, Truc L. Nguyen, Omar Inverso, B. Fischer, S. L. Torre, G. Parlato
{"title":"通过共享内存抽象实现TSO和PSO的延迟排序","authors":"Ermenegildo Tomasco, Truc L. Nguyen, Omar Inverso, B. Fischer, S. L. Torre, G. Parlato","doi":"10.5555/3077629.3077662","DOIUrl":null,"url":null,"abstract":"Lazy sequentialization is one of the most effective approaches for the bounded verification of concurrent programs. Existing tools assume sequential consistency (SC), thus the feasibility of lazy sequentializations for weak memory models (WMMs) remains untested. Here, we describe the first lazy sequentialization approach for the total store order (TSO) and partial store order (PSO) memory models. We replace all shared memory accesses with operations on a shared memory abstraction (SMA), an abstract data type that encapsulates the semantics of the underlying WMM and implements it under the simpler SC model. We give efficient SMA implementations for TSO and PSO that are based on temporal circular doubly-linked lists, a new data structure that allows an efficient simulation of the store buffers. We show experimentally, both on the SV-COMP concurrency benchmarks and a real world instance, that this approach works well in combination with lazy sequentialization on top of bounded model checking.","PeriodicalId":6479,"journal":{"name":"2016 Formal Methods in Computer-Aided Design (FMCAD)","volume":"20 1","pages":"193-200"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Lazy sequentialization for TSO and PSO via shared memory abstractions\",\"authors\":\"Ermenegildo Tomasco, Truc L. Nguyen, Omar Inverso, B. Fischer, S. L. Torre, G. Parlato\",\"doi\":\"10.5555/3077629.3077662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lazy sequentialization is one of the most effective approaches for the bounded verification of concurrent programs. Existing tools assume sequential consistency (SC), thus the feasibility of lazy sequentializations for weak memory models (WMMs) remains untested. Here, we describe the first lazy sequentialization approach for the total store order (TSO) and partial store order (PSO) memory models. We replace all shared memory accesses with operations on a shared memory abstraction (SMA), an abstract data type that encapsulates the semantics of the underlying WMM and implements it under the simpler SC model. We give efficient SMA implementations for TSO and PSO that are based on temporal circular doubly-linked lists, a new data structure that allows an efficient simulation of the store buffers. We show experimentally, both on the SV-COMP concurrency benchmarks and a real world instance, that this approach works well in combination with lazy sequentialization on top of bounded model checking.\",\"PeriodicalId\":6479,\"journal\":{\"name\":\"2016 Formal Methods in Computer-Aided Design (FMCAD)\",\"volume\":\"20 1\",\"pages\":\"193-200\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Formal Methods in Computer-Aided Design (FMCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5555/3077629.3077662\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Formal Methods in Computer-Aided Design (FMCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/3077629.3077662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lazy sequentialization for TSO and PSO via shared memory abstractions
Lazy sequentialization is one of the most effective approaches for the bounded verification of concurrent programs. Existing tools assume sequential consistency (SC), thus the feasibility of lazy sequentializations for weak memory models (WMMs) remains untested. Here, we describe the first lazy sequentialization approach for the total store order (TSO) and partial store order (PSO) memory models. We replace all shared memory accesses with operations on a shared memory abstraction (SMA), an abstract data type that encapsulates the semantics of the underlying WMM and implements it under the simpler SC model. We give efficient SMA implementations for TSO and PSO that are based on temporal circular doubly-linked lists, a new data structure that allows an efficient simulation of the store buffers. We show experimentally, both on the SV-COMP concurrency benchmarks and a real world instance, that this approach works well in combination with lazy sequentialization on top of bounded model checking.