{"title":"I-Rad——⊕补充模块","authors":"B. Türkmen","doi":"10.2478/ausm-2019-0017","DOIUrl":null,"url":null,"abstract":"Abstract Let M be an R-module and I be an ideal of R. We say that M is I-Rad-⊕-supplemented, provided for every submodule N of M, there exists a direct summand K of M such that M = N + K, N ∩ K ⊆ IK and N ∩ K Rad(K). The aim of this paper is to show new properties of I-Rad-⊕-supplemented modules. Especially, we show that any finite direct sum of I-Rad-⊕-supplemented modules is I-Rad-⊕-supplemented. We also prove that an R-module M is I-Rad-⊕-supplemented if and only if K and MK ${M \\over K}$ are I-Rad-⊕-supplemented for a fully invariant direct summand K of M. Finally, we determine the structure of I-Rad-⊕-supplemented modules over a discrete valuation ring.","PeriodicalId":43054,"journal":{"name":"Acta Universitatis Sapientiae-Mathematica","volume":"12 1","pages":"224 - 233"},"PeriodicalIF":0.6000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"I-Rad-⊕-supplemented modules\",\"authors\":\"B. Türkmen\",\"doi\":\"10.2478/ausm-2019-0017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let M be an R-module and I be an ideal of R. We say that M is I-Rad-⊕-supplemented, provided for every submodule N of M, there exists a direct summand K of M such that M = N + K, N ∩ K ⊆ IK and N ∩ K Rad(K). The aim of this paper is to show new properties of I-Rad-⊕-supplemented modules. Especially, we show that any finite direct sum of I-Rad-⊕-supplemented modules is I-Rad-⊕-supplemented. We also prove that an R-module M is I-Rad-⊕-supplemented if and only if K and MK ${M \\\\over K}$ are I-Rad-⊕-supplemented for a fully invariant direct summand K of M. Finally, we determine the structure of I-Rad-⊕-supplemented modules over a discrete valuation ring.\",\"PeriodicalId\":43054,\"journal\":{\"name\":\"Acta Universitatis Sapientiae-Mathematica\",\"volume\":\"12 1\",\"pages\":\"224 - 233\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Universitatis Sapientiae-Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausm-2019-0017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitatis Sapientiae-Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausm-2019-0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Abstract Let M be an R-module and I be an ideal of R. We say that M is I-Rad-⊕-supplemented, provided for every submodule N of M, there exists a direct summand K of M such that M = N + K, N ∩ K ⊆ IK and N ∩ K Rad(K). The aim of this paper is to show new properties of I-Rad-⊕-supplemented modules. Especially, we show that any finite direct sum of I-Rad-⊕-supplemented modules is I-Rad-⊕-supplemented. We also prove that an R-module M is I-Rad-⊕-supplemented if and only if K and MK ${M \over K}$ are I-Rad-⊕-supplemented for a fully invariant direct summand K of M. Finally, we determine the structure of I-Rad-⊕-supplemented modules over a discrete valuation ring.