数字化乳腺断层合成中的病变检测:参与DBTex挑战的方法、经验和结果

R. Martí, Pablo G. del Campo, Joel Vidal, X. Cufí, J. Martí, M. Chevalier, J. Freixenet
{"title":"数字化乳腺断层合成中的病变检测:参与DBTex挑战的方法、经验和结果","authors":"R. Martí, Pablo G. del Campo, Joel Vidal, X. Cufí, J. Martí, M. Chevalier, J. Freixenet","doi":"10.1117/12.2625733","DOIUrl":null,"url":null,"abstract":"The paper presents a framework for the detection of mass-like lesions in 3D digital breast tomosynthesis. It consists of several steps, including pre and post-processing, and a main detection block based on a Faster RCNN deep learning network. In addition to the framework, the paper describes different training steps to achieve better performance, including transfer learning using both mammographic and DBT data. The presented approach obtained third place in the recent DBT Lesion detection Challenge, DBTex, being the top approach without using an ensemble based method.","PeriodicalId":92005,"journal":{"name":"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)","volume":"49 1","pages":"122860W - 122860W-6"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lesion detection in digital breast tomosynthesis: method, experiences and results of participating to the DBTex challenge\",\"authors\":\"R. Martí, Pablo G. del Campo, Joel Vidal, X. Cufí, J. Martí, M. Chevalier, J. Freixenet\",\"doi\":\"10.1117/12.2625733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a framework for the detection of mass-like lesions in 3D digital breast tomosynthesis. It consists of several steps, including pre and post-processing, and a main detection block based on a Faster RCNN deep learning network. In addition to the framework, the paper describes different training steps to achieve better performance, including transfer learning using both mammographic and DBT data. The presented approach obtained third place in the recent DBT Lesion detection Challenge, DBTex, being the top approach without using an ensemble based method.\",\"PeriodicalId\":92005,\"journal\":{\"name\":\"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)\",\"volume\":\"49 1\",\"pages\":\"122860W - 122860W-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2625733\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2625733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种在三维数字乳腺断层合成中检测肿块样病变的框架。它由几个步骤组成,包括预处理和后处理,以及一个基于Faster RCNN深度学习网络的主检测块。除了框架之外,本文还描述了实现更好性能的不同训练步骤,包括使用乳房x线摄影和DBT数据的迁移学习。该方法在最近的DBT病变检测挑战赛(DBTex)中获得第三名,成为不使用基于集成的方法的最佳方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lesion detection in digital breast tomosynthesis: method, experiences and results of participating to the DBTex challenge
The paper presents a framework for the detection of mass-like lesions in 3D digital breast tomosynthesis. It consists of several steps, including pre and post-processing, and a main detection block based on a Faster RCNN deep learning network. In addition to the framework, the paper describes different training steps to achieve better performance, including transfer learning using both mammographic and DBT data. The presented approach obtained third place in the recent DBT Lesion detection Challenge, DBTex, being the top approach without using an ensemble based method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信