基于DOE和析因分析技术的芯片基板封装灵敏度设计

M. Yew, C. Yuan, K. Chiang, Yu-Hua Chen, Wen-Kung Yang
{"title":"基于DOE和析因分析技术的芯片基板封装灵敏度设计","authors":"M. Yew, C. Yuan, K. Chiang, Yu-Hua Chen, Wen-Kung Yang","doi":"10.1109/ESIME.2006.1643967","DOIUrl":null,"url":null,"abstract":"As electronic devices become more complicated and the need for semiconductor chips in portable products increases, the demand for smaller and lighter chips and packages becomes greater. However, because of the different temperature loading from the manufacturing process, the mismatch in the coefficient of thermal expansion (CTE) between different materials affects the packaging reliability. In this study, the chip-in-substrate package (CiSP), which has been developed by ITRI/ERSO and Fraunhofer IZM, is chosen as the test instrument. For the purpose of comprehending the stress/strain accumulation during the manufacturing process, a process modeling methodology has been executed to determine the evolution of stresses distribution during the sequential fabrication of CiSP structures. In addition, to further improve the packaging design of CiSP, the stress/strain variation around the most critical region is investigated by means of the design of experiment (DOE). A two-step design method based on the validated model is proposed for the development of the CiSP. The analytic results reveal that decreasing the thickness of the lamination layer and increasing the thickness of the interconnect can effectively reduce the stress concentration phenomenon. The robust design parameters for the CiSP could be achieved through the analytical procedures presented in this study. Therefore, the CiSP can be fabricated within the validated design parameters and can consequently meet the demand of decreasing the amount of time involved in product development","PeriodicalId":60796,"journal":{"name":"微纳电子与智能制造","volume":"4 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sensitivity Design of the Chip-in-Substrate Package Using DOE with Factorial Analysis Technology\",\"authors\":\"M. Yew, C. Yuan, K. Chiang, Yu-Hua Chen, Wen-Kung Yang\",\"doi\":\"10.1109/ESIME.2006.1643967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As electronic devices become more complicated and the need for semiconductor chips in portable products increases, the demand for smaller and lighter chips and packages becomes greater. However, because of the different temperature loading from the manufacturing process, the mismatch in the coefficient of thermal expansion (CTE) between different materials affects the packaging reliability. In this study, the chip-in-substrate package (CiSP), which has been developed by ITRI/ERSO and Fraunhofer IZM, is chosen as the test instrument. For the purpose of comprehending the stress/strain accumulation during the manufacturing process, a process modeling methodology has been executed to determine the evolution of stresses distribution during the sequential fabrication of CiSP structures. In addition, to further improve the packaging design of CiSP, the stress/strain variation around the most critical region is investigated by means of the design of experiment (DOE). A two-step design method based on the validated model is proposed for the development of the CiSP. The analytic results reveal that decreasing the thickness of the lamination layer and increasing the thickness of the interconnect can effectively reduce the stress concentration phenomenon. The robust design parameters for the CiSP could be achieved through the analytical procedures presented in this study. Therefore, the CiSP can be fabricated within the validated design parameters and can consequently meet the demand of decreasing the amount of time involved in product development\",\"PeriodicalId\":60796,\"journal\":{\"name\":\"微纳电子与智能制造\",\"volume\":\"4 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"微纳电子与智能制造\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.1109/ESIME.2006.1643967\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"微纳电子与智能制造","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1109/ESIME.2006.1643967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着电子设备变得越来越复杂,便携式产品对半导体芯片的需求也在增加,对更小、更轻的芯片和封装的需求也越来越大。然而,由于制造过程中的温度负荷不同,不同材料之间的热膨胀系数(CTE)的不匹配影响了封装的可靠性。在本研究中,我们选择了由ITRI/ERSO和Fraunhofer IZM共同开发的芯片衬底封装(chip-in-substrate package, CiSP)作为测试仪器。为了理解制造过程中的应力/应变积累,采用了过程建模方法来确定CiSP结构在顺序制造过程中的应力分布演变。此外,为了进一步改进CiSP的封装设计,采用实验设计(DOE)的方法研究了最关键区域周围的应力/应变变化。提出了一种基于验证模型的两步设计方法。分析结果表明,减小层压厚度和增加互连层厚度可以有效地减小应力集中现象。CiSP的稳健设计参数可以通过本研究中提出的分析程序来实现。因此,CiSP可以在验证的设计参数内制造,因此可以满足减少产品开发所需时间的需求
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sensitivity Design of the Chip-in-Substrate Package Using DOE with Factorial Analysis Technology
As electronic devices become more complicated and the need for semiconductor chips in portable products increases, the demand for smaller and lighter chips and packages becomes greater. However, because of the different temperature loading from the manufacturing process, the mismatch in the coefficient of thermal expansion (CTE) between different materials affects the packaging reliability. In this study, the chip-in-substrate package (CiSP), which has been developed by ITRI/ERSO and Fraunhofer IZM, is chosen as the test instrument. For the purpose of comprehending the stress/strain accumulation during the manufacturing process, a process modeling methodology has been executed to determine the evolution of stresses distribution during the sequential fabrication of CiSP structures. In addition, to further improve the packaging design of CiSP, the stress/strain variation around the most critical region is investigated by means of the design of experiment (DOE). A two-step design method based on the validated model is proposed for the development of the CiSP. The analytic results reveal that decreasing the thickness of the lamination layer and increasing the thickness of the interconnect can effectively reduce the stress concentration phenomenon. The robust design parameters for the CiSP could be achieved through the analytical procedures presented in this study. Therefore, the CiSP can be fabricated within the validated design parameters and can consequently meet the demand of decreasing the amount of time involved in product development
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
145
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信