用惩罚法求解Maxwell-Stokes型方程弱解的存在性

Q4 Mathematics
J. Aramaki
{"title":"用惩罚法求解Maxwell-Stokes型方程弱解的存在性","authors":"J. Aramaki","doi":"10.37622/ADSA/15.2.2020.231-247","DOIUrl":null,"url":null,"abstract":"In this paper, we show the existence of a weak solution to the Maxwell-Stokes type equation by the penalty method introduced by Temam. Our approximate equation is nonlinear and contains so called p-curl system. Furthermore, we obtain the continuous dependence of the weak solution on the data.","PeriodicalId":36469,"journal":{"name":"Advances in Dynamical Systems and Applications","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Existence of a Weak Solution to the Maxwell-Stokes Type Equation by the Penalty Method\",\"authors\":\"J. Aramaki\",\"doi\":\"10.37622/ADSA/15.2.2020.231-247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we show the existence of a weak solution to the Maxwell-Stokes type equation by the penalty method introduced by Temam. Our approximate equation is nonlinear and contains so called p-curl system. Furthermore, we obtain the continuous dependence of the weak solution on the data.\",\"PeriodicalId\":36469,\"journal\":{\"name\":\"Advances in Dynamical Systems and Applications\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Dynamical Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37622/ADSA/15.2.2020.231-247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Dynamical Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37622/ADSA/15.2.2020.231-247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

本文用Temam引入的惩罚方法证明了Maxwell-Stokes型方程弱解的存在性。我们的近似方程是非线性的,包含所谓的p旋度系统。进一步,我们得到了弱解对数据的连续依赖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of a Weak Solution to the Maxwell-Stokes Type Equation by the Penalty Method
In this paper, we show the existence of a weak solution to the Maxwell-Stokes type equation by the penalty method introduced by Temam. Our approximate equation is nonlinear and contains so called p-curl system. Furthermore, we obtain the continuous dependence of the weak solution on the data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信