用于井和油藏连续监测的新型实时示踪技术

E. Nikjoo
{"title":"用于井和油藏连续监测的新型实时示踪技术","authors":"E. Nikjoo","doi":"10.2118/197691-ms","DOIUrl":null,"url":null,"abstract":"\n Inflow tracer technology is a proven, risk-free and cost-effective method for continuous well and reservoir monitoring. To enable steady-state inflow assessment in real time, RESMAN has recently developed a new generation of Realtime Tracer technology. After a few years extensive research and development, this patented technology has been recently piloted successfully. This paper describes the different aspects of this new technology for the first time and present the results of the pilot.\n The Realtime Tracer technology consists of intelligent chemical tracers released by autonomous and wireless downhole injection tools and an in-line optical device at surface, which is retrievable and insertable during operation, for real time measurement of tracer signal.\n Upon injection, the intelligent tracers partition into the fluid phases, e.g. water tracer goes to water phase and oil tracer to oil phase, and subsequently the tracer molecules are transported to surface according to the velocity of fluids. At surface an automated measurement method with high sampling frequency, up to 0.1 second, ensures capturing all the tracer features with high resolution. The measured tracer signal is simultaneously processed in real time, by applying a dedicated computational algorithm, so that the results of test can be ready shortly after finishing the tests.\n The Realtime Tracer pilot was conducted in an onshore, vertical and water test well in Norway. The downhole injection tools were placed in two locations along the well while the in-line probe was installed on the surface line. Based on the results from the pilot, all aspects of this technology have been successfully validated and verified. This includes the performance of injection tools, detection of different tracers, measurement method and device, the dedicated software and its incorporated algorithm as well as inflow assessment to allow for relative production estimation.\n The Realtime Tracer technology provides significant improvement in tracer technology as it enhances different aspects of the existing tracer technologies through testing a well during production (no need for well shut-in and thus no production loss), less human interaction by real time measurement with high frequency (no need for manual sampling), quick delivery of results etc. The latter, for example, will improve decision-making process significantly, enabling production engineers to optimise the well performance and helps them to mitigate the problems as early as possible.","PeriodicalId":11061,"journal":{"name":"Day 1 Mon, November 11, 2019","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Novel Realtime Tracer Technology for Continuous Well and Reservoir Monitoring\",\"authors\":\"E. Nikjoo\",\"doi\":\"10.2118/197691-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Inflow tracer technology is a proven, risk-free and cost-effective method for continuous well and reservoir monitoring. To enable steady-state inflow assessment in real time, RESMAN has recently developed a new generation of Realtime Tracer technology. After a few years extensive research and development, this patented technology has been recently piloted successfully. This paper describes the different aspects of this new technology for the first time and present the results of the pilot.\\n The Realtime Tracer technology consists of intelligent chemical tracers released by autonomous and wireless downhole injection tools and an in-line optical device at surface, which is retrievable and insertable during operation, for real time measurement of tracer signal.\\n Upon injection, the intelligent tracers partition into the fluid phases, e.g. water tracer goes to water phase and oil tracer to oil phase, and subsequently the tracer molecules are transported to surface according to the velocity of fluids. At surface an automated measurement method with high sampling frequency, up to 0.1 second, ensures capturing all the tracer features with high resolution. The measured tracer signal is simultaneously processed in real time, by applying a dedicated computational algorithm, so that the results of test can be ready shortly after finishing the tests.\\n The Realtime Tracer pilot was conducted in an onshore, vertical and water test well in Norway. The downhole injection tools were placed in two locations along the well while the in-line probe was installed on the surface line. Based on the results from the pilot, all aspects of this technology have been successfully validated and verified. This includes the performance of injection tools, detection of different tracers, measurement method and device, the dedicated software and its incorporated algorithm as well as inflow assessment to allow for relative production estimation.\\n The Realtime Tracer technology provides significant improvement in tracer technology as it enhances different aspects of the existing tracer technologies through testing a well during production (no need for well shut-in and thus no production loss), less human interaction by real time measurement with high frequency (no need for manual sampling), quick delivery of results etc. The latter, for example, will improve decision-making process significantly, enabling production engineers to optimise the well performance and helps them to mitigate the problems as early as possible.\",\"PeriodicalId\":11061,\"journal\":{\"name\":\"Day 1 Mon, November 11, 2019\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Mon, November 11, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/197691-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, November 11, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/197691-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

流入示踪剂技术是一种成熟、无风险、经济高效的连续井和油藏监测方法。为了能够实时评估稳态流入,RESMAN最近开发了新一代实时示踪技术。经过几年的广泛研究和开发,这项专利技术最近已成功试点。本文首次介绍了该新技术的不同方面,并介绍了试验结果。实时示踪技术由自动无线井下注入工具释放的智能化学示踪剂和地面的在线光学装置组成,该装置在操作过程中可回收和插入,用于实时测量示踪剂信号。在注入后,智能示踪剂划分为流体相,水示踪剂进入水相,油示踪剂进入油相,随后示踪剂分子根据流体速度被输送到表面。在表面,采用高采样频率的自动测量方法,最高0.1秒,确保以高分辨率捕获所有示踪剂特征。通过应用专用的计算算法,对测量的示踪信号进行实时同步处理,以便在完成测试后不久即可准备好测试结果。实时示踪剂在挪威的一口陆上、垂直和水测试井中进行了试验。井下注入工具沿井放置在两个位置,而直管探头则安装在地面管线上。根据试验结果,该技术的各个方面都得到了成功的验证和验证。这包括注入工具的性能、不同示踪剂的检测、测量方法和设备、专用软件及其集成算法,以及流入评估,以便进行相对产量估算。实时示踪技术对示踪技术进行了重大改进,因为它通过在生产过程中对井进行测试(不需要关井,因此不会造成生产损失)、通过高频实时测量减少人工交互(不需要人工采样)、快速交付结果等方式,增强了现有示踪技术的不同方面。例如,后者将显著改善决策过程,使生产工程师能够优化油井性能,并帮助他们尽早缓解问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel Realtime Tracer Technology for Continuous Well and Reservoir Monitoring
Inflow tracer technology is a proven, risk-free and cost-effective method for continuous well and reservoir monitoring. To enable steady-state inflow assessment in real time, RESMAN has recently developed a new generation of Realtime Tracer technology. After a few years extensive research and development, this patented technology has been recently piloted successfully. This paper describes the different aspects of this new technology for the first time and present the results of the pilot. The Realtime Tracer technology consists of intelligent chemical tracers released by autonomous and wireless downhole injection tools and an in-line optical device at surface, which is retrievable and insertable during operation, for real time measurement of tracer signal. Upon injection, the intelligent tracers partition into the fluid phases, e.g. water tracer goes to water phase and oil tracer to oil phase, and subsequently the tracer molecules are transported to surface according to the velocity of fluids. At surface an automated measurement method with high sampling frequency, up to 0.1 second, ensures capturing all the tracer features with high resolution. The measured tracer signal is simultaneously processed in real time, by applying a dedicated computational algorithm, so that the results of test can be ready shortly after finishing the tests. The Realtime Tracer pilot was conducted in an onshore, vertical and water test well in Norway. The downhole injection tools were placed in two locations along the well while the in-line probe was installed on the surface line. Based on the results from the pilot, all aspects of this technology have been successfully validated and verified. This includes the performance of injection tools, detection of different tracers, measurement method and device, the dedicated software and its incorporated algorithm as well as inflow assessment to allow for relative production estimation. The Realtime Tracer technology provides significant improvement in tracer technology as it enhances different aspects of the existing tracer technologies through testing a well during production (no need for well shut-in and thus no production loss), less human interaction by real time measurement with high frequency (no need for manual sampling), quick delivery of results etc. The latter, for example, will improve decision-making process significantly, enabling production engineers to optimise the well performance and helps them to mitigate the problems as early as possible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信