so0 (1,k + 1)和SU(1,k + 1)的循环子群的几何极限

IF 0.6 3区 数学 Q3 MATHEMATICS
Sara Maloni, M. B. Pozzetti
{"title":"so0 (1,k + 1)和SU(1,k + 1)的循环子群的几何极限","authors":"Sara Maloni, M. B. Pozzetti","doi":"10.2140/agt.2022.22.1461","DOIUrl":null,"url":null,"abstract":"We study geometric limits of convex-cocompact cyclic subgroups of the rank 1 groups SO_0(1, k+1) and SU(1, k+1). We construct examples of sequences of subgroups of such groups G that converge algebraically and whose geometric limit strictly contains the algebraic limit, thus generalizing the example first described by Jorgensen for subgroups of SO_0(1,3). We also give necessary and sufficient conditions for a subgroup of SO_0(1, k+1) to arise as geometric limit of a sequence of cyclic subgroups. We then discuss generalizations of such examples to sequence of representations of free groups, and applications of our constructions in that setting.","PeriodicalId":50826,"journal":{"name":"Algebraic and Geometric Topology","volume":"20 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric limits of cyclic subgroups of\\nSO0(1,k + 1) and SU(1,k + 1)\",\"authors\":\"Sara Maloni, M. B. Pozzetti\",\"doi\":\"10.2140/agt.2022.22.1461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study geometric limits of convex-cocompact cyclic subgroups of the rank 1 groups SO_0(1, k+1) and SU(1, k+1). We construct examples of sequences of subgroups of such groups G that converge algebraically and whose geometric limit strictly contains the algebraic limit, thus generalizing the example first described by Jorgensen for subgroups of SO_0(1,3). We also give necessary and sufficient conditions for a subgroup of SO_0(1, k+1) to arise as geometric limit of a sequence of cyclic subgroups. We then discuss generalizations of such examples to sequence of representations of free groups, and applications of our constructions in that setting.\",\"PeriodicalId\":50826,\"journal\":{\"name\":\"Algebraic and Geometric Topology\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic and Geometric Topology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/agt.2022.22.1461\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic and Geometric Topology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/agt.2022.22.1461","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了秩1群SO_0(1, k+1)和SU(1, k+1)的凸紧循环子群的几何极限。我们构造了这类群G的子群序列在代数上收敛且其几何极限严格包含代数极限的例子,从而推广了最初由Jorgensen描述的SO_0(1,3)子群的例子。并给出了SO_0(1, k+1)的子群作为循环子群序列的几何极限的充分必要条件。然后,我们讨论了这些例子的推广到自由群的表示序列,以及我们的结构在这种情况下的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric limits of cyclic subgroups of SO0(1,k + 1) and SU(1,k + 1)
We study geometric limits of convex-cocompact cyclic subgroups of the rank 1 groups SO_0(1, k+1) and SU(1, k+1). We construct examples of sequences of subgroups of such groups G that converge algebraically and whose geometric limit strictly contains the algebraic limit, thus generalizing the example first described by Jorgensen for subgroups of SO_0(1,3). We also give necessary and sufficient conditions for a subgroup of SO_0(1, k+1) to arise as geometric limit of a sequence of cyclic subgroups. We then discuss generalizations of such examples to sequence of representations of free groups, and applications of our constructions in that setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Algebraic and Geometric Topology is a fully refereed journal covering all of topology, broadly understood.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信