ZPR沙漏晶格结构的色散特性

Amanpreet Singh, Vivek Gupta, B. Bhattacharya
{"title":"ZPR沙漏晶格结构的色散特性","authors":"Amanpreet Singh, Vivek Gupta, B. Bhattacharya","doi":"10.1117/12.2658349","DOIUrl":null,"url":null,"abstract":"2-D lattice structures have gained considerable attention over the past few decades due to their high strengthto- weight ratio. Enormous studies have been conducted on various shapes of the 2D lattice structures. Different shapes of the 2-D lattices exhibit different Poisson's ratio values. The Poisson's ratio ranges from negative to positive values for conventional lattice structures such as honeycomb and auxetic honeycomb lattice structures. However, there exist such lattice structures that exhibit Zero Poisson's Ratio (ZPR). In this article, we propose a novel hourglass structure (HG) that exhibits Zero Poisson's Ratio (ZPR HG), studied dispersion behaviour, and compared with negative (Aux HG) and positive (Hcb HG) Poisson's Ratios. The emergence of the band structure in the HG-ZPR has been studied analytically and compared with the conventional hourglass structures that exhibit positive/ negative Poisson's ratio. The dependency of the band structure on Poisson's ratio has been investigated. A significant variation in the band structure has been observed as the microstructure of the hourglass structure varies. This study intends to provide the necessary physical insights showing the dependency of the band structure on Poisson's ratio.","PeriodicalId":89272,"journal":{"name":"Smart structures and materials. Nondestructive evaluation for health monitoring and diagnostics","volume":"28 1","pages":"1248305 - 1248305-8"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dispersion characteristics of a ZPR hourglass lattice structure\",\"authors\":\"Amanpreet Singh, Vivek Gupta, B. Bhattacharya\",\"doi\":\"10.1117/12.2658349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"2-D lattice structures have gained considerable attention over the past few decades due to their high strengthto- weight ratio. Enormous studies have been conducted on various shapes of the 2D lattice structures. Different shapes of the 2-D lattices exhibit different Poisson's ratio values. The Poisson's ratio ranges from negative to positive values for conventional lattice structures such as honeycomb and auxetic honeycomb lattice structures. However, there exist such lattice structures that exhibit Zero Poisson's Ratio (ZPR). In this article, we propose a novel hourglass structure (HG) that exhibits Zero Poisson's Ratio (ZPR HG), studied dispersion behaviour, and compared with negative (Aux HG) and positive (Hcb HG) Poisson's Ratios. The emergence of the band structure in the HG-ZPR has been studied analytically and compared with the conventional hourglass structures that exhibit positive/ negative Poisson's ratio. The dependency of the band structure on Poisson's ratio has been investigated. A significant variation in the band structure has been observed as the microstructure of the hourglass structure varies. This study intends to provide the necessary physical insights showing the dependency of the band structure on Poisson's ratio.\",\"PeriodicalId\":89272,\"journal\":{\"name\":\"Smart structures and materials. Nondestructive evaluation for health monitoring and diagnostics\",\"volume\":\"28 1\",\"pages\":\"1248305 - 1248305-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart structures and materials. Nondestructive evaluation for health monitoring and diagnostics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2658349\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart structures and materials. Nondestructive evaluation for health monitoring and diagnostics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2658349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去的几十年里,二维晶格结构由于其高强度重量比而获得了相当大的关注。人们对二维晶格结构的各种形状进行了大量的研究。不同形状的二维晶格具有不同的泊松比值。对于蜂窝晶格结构和蜂窝晶格结构等传统晶格结构,泊松比的取值范围从负到正。然而,存在这样的晶格结构表现为零泊松比(ZPR)。在本文中,我们提出了一种具有零泊松比(ZPR HG)的新型沙漏结构(HG),研究了色散行为,并与负(Aux HG)和正(Hcb HG)泊松比进行了比较。对HG-ZPR中带状结构的出现进行了分析研究,并与具有正/负泊松比的传统沙漏结构进行了比较。研究了带结构与泊松比的关系。随着沙漏结构微观结构的变化,可以观察到带结构的显著变化。本研究旨在提供必要的物理见解,显示带结构对泊松比的依赖性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dispersion characteristics of a ZPR hourglass lattice structure
2-D lattice structures have gained considerable attention over the past few decades due to their high strengthto- weight ratio. Enormous studies have been conducted on various shapes of the 2D lattice structures. Different shapes of the 2-D lattices exhibit different Poisson's ratio values. The Poisson's ratio ranges from negative to positive values for conventional lattice structures such as honeycomb and auxetic honeycomb lattice structures. However, there exist such lattice structures that exhibit Zero Poisson's Ratio (ZPR). In this article, we propose a novel hourglass structure (HG) that exhibits Zero Poisson's Ratio (ZPR HG), studied dispersion behaviour, and compared with negative (Aux HG) and positive (Hcb HG) Poisson's Ratios. The emergence of the band structure in the HG-ZPR has been studied analytically and compared with the conventional hourglass structures that exhibit positive/ negative Poisson's ratio. The dependency of the band structure on Poisson's ratio has been investigated. A significant variation in the band structure has been observed as the microstructure of the hourglass structure varies. This study intends to provide the necessary physical insights showing the dependency of the band structure on Poisson's ratio.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信