里奇曲率流形中的最小面积超曲面

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Q. Ding
{"title":"里奇曲率流形中的最小面积超曲面","authors":"Q. Ding","doi":"10.1515/crelle-2023-0008","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we study area-minimizing hypersurfaces in manifolds of Ricci curvature bounded below with Cheeger–Colding theory. Let N i {N_{i}} be a sequence of smooth manifolds with Ricci curvature ≥ - n ⁢ κ 2 {\\geq-n\\kappa^{2}} on B 1 + κ ′ ⁢ ( p i ) {B_{1+\\kappa^{\\prime}}(p_{i})} for constants κ ≥ 0 {\\kappa\\geq 0} , κ ′ > 0 {\\kappa^{\\prime}>0} , and volume of B 1 ⁢ ( p i ) {B_{1}(p_{i})} has a positive uniformly lower bound. Assume B 1 ⁢ ( p i ) {B_{1}(p_{i})} converges to a metric ball B 1 ⁢ ( p ∞ ) {B_{1}(p_{\\infty})} in the Gromov–Hausdorff sense. For a sequence of area-minimizing hypersurfaces M i {M_{i}} in B 1 ⁢ ( p i ) {B_{1}(p_{i})} with ∂ ⁡ M i ⊂ ∂ ⁡ B 1 ⁢ ( p i ) {\\partial M_{i}\\subset\\partial B_{1}(p_{i})} , we prove the continuity for the volume function of area-minimizing hypersurfaces equipped with the induced Hausdorff topology. In particular, each limit M ∞ {M_{\\infty}} of M i {M_{i}} is area-minimizing in B 1 ⁢ ( p ∞ ) {B_{1}(p_{\\infty})} provided B 1 ⁢ ( p ∞ ) {B_{1}(p_{\\infty})} is a smooth Riemannian manifold. By blowing up argument, we get sharp dimensional estimates for the singular set of M ∞ {M_{\\infty}} in ℛ {\\mathcal{R}} , and 𝒮 ∩ M ∞ {\\mathcal{S}\\cap M_{\\infty}} . Here, ℛ {\\mathcal{R}} and 𝒮 {\\mathcal{S}} are the regular and singular parts of B 1 ⁢ ( p ∞ ) {B_{1}(p_{\\infty})} , respectively.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Area-minimizing hypersurfaces in manifolds of Ricci curvature bounded below\",\"authors\":\"Q. Ding\",\"doi\":\"10.1515/crelle-2023-0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we study area-minimizing hypersurfaces in manifolds of Ricci curvature bounded below with Cheeger–Colding theory. Let N i {N_{i}} be a sequence of smooth manifolds with Ricci curvature ≥ - n ⁢ κ 2 {\\\\geq-n\\\\kappa^{2}} on B 1 + κ ′ ⁢ ( p i ) {B_{1+\\\\kappa^{\\\\prime}}(p_{i})} for constants κ ≥ 0 {\\\\kappa\\\\geq 0} , κ ′ > 0 {\\\\kappa^{\\\\prime}>0} , and volume of B 1 ⁢ ( p i ) {B_{1}(p_{i})} has a positive uniformly lower bound. Assume B 1 ⁢ ( p i ) {B_{1}(p_{i})} converges to a metric ball B 1 ⁢ ( p ∞ ) {B_{1}(p_{\\\\infty})} in the Gromov–Hausdorff sense. For a sequence of area-minimizing hypersurfaces M i {M_{i}} in B 1 ⁢ ( p i ) {B_{1}(p_{i})} with ∂ ⁡ M i ⊂ ∂ ⁡ B 1 ⁢ ( p i ) {\\\\partial M_{i}\\\\subset\\\\partial B_{1}(p_{i})} , we prove the continuity for the volume function of area-minimizing hypersurfaces equipped with the induced Hausdorff topology. In particular, each limit M ∞ {M_{\\\\infty}} of M i {M_{i}} is area-minimizing in B 1 ⁢ ( p ∞ ) {B_{1}(p_{\\\\infty})} provided B 1 ⁢ ( p ∞ ) {B_{1}(p_{\\\\infty})} is a smooth Riemannian manifold. By blowing up argument, we get sharp dimensional estimates for the singular set of M ∞ {M_{\\\\infty}} in ℛ {\\\\mathcal{R}} , and 𝒮 ∩ M ∞ {\\\\mathcal{S}\\\\cap M_{\\\\infty}} . Here, ℛ {\\\\mathcal{R}} and 𝒮 {\\\\mathcal{S}} are the regular and singular parts of B 1 ⁢ ( p ∞ ) {B_{1}(p_{\\\\infty})} , respectively.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/crelle-2023-0008\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2023-0008","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

摘要本文利用Cheeger-Colding理论研究了Ricci曲率流形中的面积最小化超曲面。设N为i {n_{I}} 为Ricci曲率≥- n∑κ 2的光滑流形序列 {\geq-n\kappa^{2}} on b1 + κ '∑(pi) {b……{1+\kappa^{\prime}}(p_){I})} 对于常数κ≥0 {\kappa\geq 0} , κ ' > 0 {\kappa^{\prime}>0} 和b1的体积∑(pi) {b……{1}(p_){I})} 有一个正的一致下界。假设b1∑(pi) {b……{1}(p_){I})} 收敛到一个公制球b1∑(p∞) {b……{1}(p_){\infty})} 在Gromov-Hausdorff意义上。对于一个面积最小化超曲面序列M i {m_{I}} 在b1中减去(p1) {b……{1}(p_){I})} 与∂∂m1≠∂∂b1≠(pi) {\partial m_{I}\subset\partial b……{1}(p_){I})} ,证明了具有诱导Hausdorff拓扑的最小面积超曲面的体积函数的连续性。特别地,每个极限M∞ {m_{\infty}} M的 {m_{I}} 是b1中面积最小的∑(p∞) {b……{1}(p_){\infty})} 假设b1∑(p∞) {b……{1}(p_){\infty})} 是光滑黎曼流形。通过放大论证,我们得到了M∞奇异集的尖锐维数估计 {m_{\infty}} 在… {\mathcal{R}} ,𝒮∩M∞ {\mathcal{S}\cap m_{\infty}} . 这里,g。 {\mathcal{R}} 还有𝒮 {\mathcal{S}} 是b1∑(p∞)的正则部分和奇异部分 {b……{1}(p_){\infty})} ,分别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Area-minimizing hypersurfaces in manifolds of Ricci curvature bounded below
Abstract In this paper, we study area-minimizing hypersurfaces in manifolds of Ricci curvature bounded below with Cheeger–Colding theory. Let N i {N_{i}} be a sequence of smooth manifolds with Ricci curvature ≥ - n ⁢ κ 2 {\geq-n\kappa^{2}} on B 1 + κ ′ ⁢ ( p i ) {B_{1+\kappa^{\prime}}(p_{i})} for constants κ ≥ 0 {\kappa\geq 0} , κ ′ > 0 {\kappa^{\prime}>0} , and volume of B 1 ⁢ ( p i ) {B_{1}(p_{i})} has a positive uniformly lower bound. Assume B 1 ⁢ ( p i ) {B_{1}(p_{i})} converges to a metric ball B 1 ⁢ ( p ∞ ) {B_{1}(p_{\infty})} in the Gromov–Hausdorff sense. For a sequence of area-minimizing hypersurfaces M i {M_{i}} in B 1 ⁢ ( p i ) {B_{1}(p_{i})} with ∂ ⁡ M i ⊂ ∂ ⁡ B 1 ⁢ ( p i ) {\partial M_{i}\subset\partial B_{1}(p_{i})} , we prove the continuity for the volume function of area-minimizing hypersurfaces equipped with the induced Hausdorff topology. In particular, each limit M ∞ {M_{\infty}} of M i {M_{i}} is area-minimizing in B 1 ⁢ ( p ∞ ) {B_{1}(p_{\infty})} provided B 1 ⁢ ( p ∞ ) {B_{1}(p_{\infty})} is a smooth Riemannian manifold. By blowing up argument, we get sharp dimensional estimates for the singular set of M ∞ {M_{\infty}} in ℛ {\mathcal{R}} , and 𝒮 ∩ M ∞ {\mathcal{S}\cap M_{\infty}} . Here, ℛ {\mathcal{R}} and 𝒮 {\mathcal{S}} are the regular and singular parts of B 1 ⁢ ( p ∞ ) {B_{1}(p_{\infty})} , respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信