活细胞结构中非线性激励的物理模型——正弦戈登孤子、扭结和呼吸子

V. Ivancevic, T. Ivancevic
{"title":"活细胞结构中非线性激励的物理模型——正弦戈登孤子、扭结和呼吸子","authors":"V. Ivancevic, T. Ivancevic","doi":"10.7546/JGSP-31-2013-1-56","DOIUrl":null,"url":null,"abstract":"Nonlinear space-time dynamics, defined in terms of celebrated 'solitonic' equations, brings indispensable tools for understanding, prediction and control of complex behaviors in both physical and life sciences. In this paper, we review sine-Gordon solitons, kinks and breathers as models of nonlinear excitations in complex systems in physics and in living cellular structures, both intra-cellular (DNA, protein folding and microtubules) and inter-cellular (neural impulses and muscular contractions). \nKey words: Sine-Gordon solitons, kinks and breathers, DNA, Protein folding, Microtubules, Neural conduction, Muscular contraction","PeriodicalId":8460,"journal":{"name":"arXiv: Other Quantitative Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":"{\"title\":\"Sine-Gordon Solitons, Kinks and Breathers as Physical Models of Nonlinear Excitations in Living Cellular Structures\",\"authors\":\"V. Ivancevic, T. Ivancevic\",\"doi\":\"10.7546/JGSP-31-2013-1-56\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nonlinear space-time dynamics, defined in terms of celebrated 'solitonic' equations, brings indispensable tools for understanding, prediction and control of complex behaviors in both physical and life sciences. In this paper, we review sine-Gordon solitons, kinks and breathers as models of nonlinear excitations in complex systems in physics and in living cellular structures, both intra-cellular (DNA, protein folding and microtubules) and inter-cellular (neural impulses and muscular contractions). \\nKey words: Sine-Gordon solitons, kinks and breathers, DNA, Protein folding, Microtubules, Neural conduction, Muscular contraction\",\"PeriodicalId\":8460,\"journal\":{\"name\":\"arXiv: Other Quantitative Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"60\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Other Quantitative Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/JGSP-31-2013-1-56\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Other Quantitative Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/JGSP-31-2013-1-56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60

摘要

由著名的“孤子”方程定义的非线性时空动力学,为理解、预测和控制物理和生命科学中的复杂行为提供了不可或缺的工具。在本文中,我们回顾了正弦戈登孤子,扭结和呼吸作为非线性激励的模型在物理和活细胞结构的复杂系统中,包括细胞内(DNA,蛋白质折叠和微管)和细胞间(神经脉冲和肌肉收缩)。关键词:正弦戈登孤子,扭结和呼吸,DNA,蛋白质折叠,微管,神经传导,肌肉收缩
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sine-Gordon Solitons, Kinks and Breathers as Physical Models of Nonlinear Excitations in Living Cellular Structures
Nonlinear space-time dynamics, defined in terms of celebrated 'solitonic' equations, brings indispensable tools for understanding, prediction and control of complex behaviors in both physical and life sciences. In this paper, we review sine-Gordon solitons, kinks and breathers as models of nonlinear excitations in complex systems in physics and in living cellular structures, both intra-cellular (DNA, protein folding and microtubules) and inter-cellular (neural impulses and muscular contractions). Key words: Sine-Gordon solitons, kinks and breathers, DNA, Protein folding, Microtubules, Neural conduction, Muscular contraction
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信