Qian Yu, Jingen Liu, Hui Cheng, Ajay Divakaran, H. Sawhney
{"title":"用于复杂事件检测的语义池","authors":"Qian Yu, Jingen Liu, Hui Cheng, Ajay Divakaran, H. Sawhney","doi":"10.1145/2502081.2502191","DOIUrl":null,"url":null,"abstract":"Complex event detection is very challenging in open source such as You-Tube videos, which usually comprise very diverse visual contents involving various object, scene and action concepts. Not all of them, however, are relevant to the event. In other words, a video may contain a lot of \"junk\" information which is harmful for recognition. Hence, we propose a semantic pooling approach to tackle this issue. Unlike the conventional pooling over the entire video or specific spatial regions of a video, we employ a discriminative approach to acquire abstract semantic \"regions\" for pooling. For this purpose, we first associate low-level visual words with semantic concepts via their co-occurrence relationship. We then pool the low-level features separately according to their semantic information. The proposed semantic pooling strategy also provides a new mechanism for incorporating semantic concepts for low-level feature based event recognition. We evaluate our approach on TRECVID MED [1] dataset and the results show that semantic pooling consistently improves the performance compared with conventional pooling strategies.","PeriodicalId":20448,"journal":{"name":"Proceedings of the 21st ACM international conference on Multimedia","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Semantic pooling for complex event detection\",\"authors\":\"Qian Yu, Jingen Liu, Hui Cheng, Ajay Divakaran, H. Sawhney\",\"doi\":\"10.1145/2502081.2502191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Complex event detection is very challenging in open source such as You-Tube videos, which usually comprise very diverse visual contents involving various object, scene and action concepts. Not all of them, however, are relevant to the event. In other words, a video may contain a lot of \\\"junk\\\" information which is harmful for recognition. Hence, we propose a semantic pooling approach to tackle this issue. Unlike the conventional pooling over the entire video or specific spatial regions of a video, we employ a discriminative approach to acquire abstract semantic \\\"regions\\\" for pooling. For this purpose, we first associate low-level visual words with semantic concepts via their co-occurrence relationship. We then pool the low-level features separately according to their semantic information. The proposed semantic pooling strategy also provides a new mechanism for incorporating semantic concepts for low-level feature based event recognition. We evaluate our approach on TRECVID MED [1] dataset and the results show that semantic pooling consistently improves the performance compared with conventional pooling strategies.\",\"PeriodicalId\":20448,\"journal\":{\"name\":\"Proceedings of the 21st ACM international conference on Multimedia\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21st ACM international conference on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2502081.2502191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2502081.2502191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Complex event detection is very challenging in open source such as You-Tube videos, which usually comprise very diverse visual contents involving various object, scene and action concepts. Not all of them, however, are relevant to the event. In other words, a video may contain a lot of "junk" information which is harmful for recognition. Hence, we propose a semantic pooling approach to tackle this issue. Unlike the conventional pooling over the entire video or specific spatial regions of a video, we employ a discriminative approach to acquire abstract semantic "regions" for pooling. For this purpose, we first associate low-level visual words with semantic concepts via their co-occurrence relationship. We then pool the low-level features separately according to their semantic information. The proposed semantic pooling strategy also provides a new mechanism for incorporating semantic concepts for low-level feature based event recognition. We evaluate our approach on TRECVID MED [1] dataset and the results show that semantic pooling consistently improves the performance compared with conventional pooling strategies.