{"title":"H^{s}(\\mathbb R^{n}) $中临界非齐次非线性Schrödinger方程的Cauchy问题","authors":"J. An, Jinmyong Kim","doi":"10.3934/eect.2022059","DOIUrl":null,"url":null,"abstract":"In this paper, we study the Cauchy problem for the critical inhomogeneous nonlinear Schrödinger (INLS) equation iut +∆u = |x| f(u), u(0) = u0 ∈ H (R), where n ≥ 3, 1 ≤ s < n2 , 0 < b < 2 and f(u) is a nonlinear function that behaves like λ |u| σ u with λ ∈ C and σ = 4−2b n−2s . We establish the local well-posedness as well as the small data global well-posedness and scattering in H(R) with 1 ≤ s < n2 for the critical INLS equation under some assumption on b. To this end, we first establish various nonlinear estimates by using fractional Hardy inequality and then use the contraction mapping principle based on Strichartz estimates.","PeriodicalId":48833,"journal":{"name":"Evolution Equations and Control Theory","volume":"93 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Cauchy problem for the critical inhomogeneous nonlinear Schrödinger equation in $ H^{s}(\\\\mathbb R^{n}) $\",\"authors\":\"J. An, Jinmyong Kim\",\"doi\":\"10.3934/eect.2022059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the Cauchy problem for the critical inhomogeneous nonlinear Schrödinger (INLS) equation iut +∆u = |x| f(u), u(0) = u0 ∈ H (R), where n ≥ 3, 1 ≤ s < n2 , 0 < b < 2 and f(u) is a nonlinear function that behaves like λ |u| σ u with λ ∈ C and σ = 4−2b n−2s . We establish the local well-posedness as well as the small data global well-posedness and scattering in H(R) with 1 ≤ s < n2 for the critical INLS equation under some assumption on b. To this end, we first establish various nonlinear estimates by using fractional Hardy inequality and then use the contraction mapping principle based on Strichartz estimates.\",\"PeriodicalId\":48833,\"journal\":{\"name\":\"Evolution Equations and Control Theory\",\"volume\":\"93 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolution Equations and Control Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/eect.2022059\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution Equations and Control Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/eect.2022059","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The Cauchy problem for the critical inhomogeneous nonlinear Schrödinger equation in $ H^{s}(\mathbb R^{n}) $
In this paper, we study the Cauchy problem for the critical inhomogeneous nonlinear Schrödinger (INLS) equation iut +∆u = |x| f(u), u(0) = u0 ∈ H (R), where n ≥ 3, 1 ≤ s < n2 , 0 < b < 2 and f(u) is a nonlinear function that behaves like λ |u| σ u with λ ∈ C and σ = 4−2b n−2s . We establish the local well-posedness as well as the small data global well-posedness and scattering in H(R) with 1 ≤ s < n2 for the critical INLS equation under some assumption on b. To this end, we first establish various nonlinear estimates by using fractional Hardy inequality and then use the contraction mapping principle based on Strichartz estimates.
期刊介绍:
EECT is primarily devoted to papers on analysis and control of infinite dimensional systems with emphasis on applications to PDE''s and FDEs. Topics include:
* Modeling of physical systems as infinite-dimensional processes
* Direct problems such as existence, regularity and well-posedness
* Stability, long-time behavior and associated dynamical attractors
* Indirect problems such as exact controllability, reachability theory and inverse problems
* Optimization - including shape optimization - optimal control, game theory and calculus of variations
* Well-posedness, stability and control of coupled systems with an interface. Free boundary problems and problems with moving interface(s)
* Applications of the theory to physics, chemistry, engineering, economics, medicine and biology