环向和非环向贝叶斯网络

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED
Lisa Nicklasson
{"title":"环向和非环向贝叶斯网络","authors":"Lisa Nicklasson","doi":"10.1137/22M1515690","DOIUrl":null,"url":null,"abstract":"In this paper we study Bayesian networks from a commutative algebra perspective. We characterize a class of toric Bayesian nets, and provide the first example of a Bayesian net which is proved non-toric under any linear change of variables. Concerning the class of toric Bayesian nets, we study their quadratic relations and prove a conjecture by Garcia, Stillman, and Sturmfels for this class. In addition, we give a necessary condition on the underlying directed acyclic graph for when all relations are quadratic.","PeriodicalId":48489,"journal":{"name":"SIAM Journal on Applied Algebra and Geometry","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2022-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Toric and Non-toric Bayesian Networks\",\"authors\":\"Lisa Nicklasson\",\"doi\":\"10.1137/22M1515690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study Bayesian networks from a commutative algebra perspective. We characterize a class of toric Bayesian nets, and provide the first example of a Bayesian net which is proved non-toric under any linear change of variables. Concerning the class of toric Bayesian nets, we study their quadratic relations and prove a conjecture by Garcia, Stillman, and Sturmfels for this class. In addition, we give a necessary condition on the underlying directed acyclic graph for when all relations are quadratic.\",\"PeriodicalId\":48489,\"journal\":{\"name\":\"SIAM Journal on Applied Algebra and Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Applied Algebra and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/22M1515690\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Algebra and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22M1515690","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

本文从交换代数的角度研究贝叶斯网络。刻画了一类环向贝叶斯网,并给出了在任意变量线性变化条件下证明非环向贝叶斯网的第一个例子。关于环面贝叶斯网类,我们研究了它们的二次关系,并证明了Garcia、Stillman和Sturmfels为该类提出的一个猜想。此外,我们还给出了有向无环图下所有关系都是二次关系的一个必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toric and Non-toric Bayesian Networks
In this paper we study Bayesian networks from a commutative algebra perspective. We characterize a class of toric Bayesian nets, and provide the first example of a Bayesian net which is proved non-toric under any linear change of variables. Concerning the class of toric Bayesian nets, we study their quadratic relations and prove a conjecture by Garcia, Stillman, and Sturmfels for this class. In addition, we give a necessary condition on the underlying directed acyclic graph for when all relations are quadratic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信