摘要247:利用Kiromic专有搜索引擎CancerDiff鉴定卵巢癌间皮素选择性剪接变体

L. Piccotti, L. Mirandola, M. Chiriva-Internati
{"title":"摘要247:利用Kiromic专有搜索引擎CancerDiff鉴定卵巢癌间皮素选择性剪接变体","authors":"L. Piccotti, L. Mirandola, M. Chiriva-Internati","doi":"10.1158/1538-7445.AM2021-247","DOIUrl":null,"url":null,"abstract":"The advancement of cures for cancer needs the development of novel, more efficacious, and more specific immunotherapeutic approaches through the discovery of novel target candidates displaying differential expression between healthy and malignant tissues. CancerDiff is a proprietary software module for the identification of potential new immunotherapeutic cancer targets that originate from differentially expressed, alternatively spliced transcripts. When utilized to analyze Ovarian Cancer (OV) datasets, CancerDiff identified a selectively upregulated mesothelin (MSLN) splice variant translated into a protein isoform (IsoMSLN) bearing a distinct unique peptide absent in the canonical protein sequence. To validate this prediction and to confirm the upregulation of IsoMSLN in OV, datasets from publicly available proteomic repositories were searched for its unique signature peptide. In agreement with CancerDiff prediction, IsoMSLN peptide was detected in 71% of OV samples and 61% of adjacent normal tissues. Molecular modeling tools predicted this peptide to be part of the extracellular portion of the protein in an antibody accessible region. These results indicate IsoMSLN unique peptide as a suitable target for immunotherapy for OV cancer. Citation Format: Lucia Piccotti, Leonardo Mirandola, Maurizio Chiriva-Internati. Identification of an ovarian cancer selective splice variant of mesothelin utilizing the Kiromic proprietary search engine CancerDiff [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 247.","PeriodicalId":73617,"journal":{"name":"Journal of bioinformatics and systems biology : Open access","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Abstract 247: Identification of an ovarian cancer selective splice variant of mesothelin utilizing the Kiromic proprietary search engine CancerDiff\",\"authors\":\"L. Piccotti, L. Mirandola, M. Chiriva-Internati\",\"doi\":\"10.1158/1538-7445.AM2021-247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The advancement of cures for cancer needs the development of novel, more efficacious, and more specific immunotherapeutic approaches through the discovery of novel target candidates displaying differential expression between healthy and malignant tissues. CancerDiff is a proprietary software module for the identification of potential new immunotherapeutic cancer targets that originate from differentially expressed, alternatively spliced transcripts. When utilized to analyze Ovarian Cancer (OV) datasets, CancerDiff identified a selectively upregulated mesothelin (MSLN) splice variant translated into a protein isoform (IsoMSLN) bearing a distinct unique peptide absent in the canonical protein sequence. To validate this prediction and to confirm the upregulation of IsoMSLN in OV, datasets from publicly available proteomic repositories were searched for its unique signature peptide. In agreement with CancerDiff prediction, IsoMSLN peptide was detected in 71% of OV samples and 61% of adjacent normal tissues. Molecular modeling tools predicted this peptide to be part of the extracellular portion of the protein in an antibody accessible region. These results indicate IsoMSLN unique peptide as a suitable target for immunotherapy for OV cancer. Citation Format: Lucia Piccotti, Leonardo Mirandola, Maurizio Chiriva-Internati. Identification of an ovarian cancer selective splice variant of mesothelin utilizing the Kiromic proprietary search engine CancerDiff [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 247.\",\"PeriodicalId\":73617,\"journal\":{\"name\":\"Journal of bioinformatics and systems biology : Open access\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of bioinformatics and systems biology : Open access\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1158/1538-7445.AM2021-247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of bioinformatics and systems biology : Open access","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1158/1538-7445.AM2021-247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

癌症治疗的进步需要通过发现在健康组织和恶性组织之间表现出差异表达的新的候选靶点来开发新的、更有效的、更特异性的免疫治疗方法。CancerDiff是一个专有的软件模块,用于鉴定来自差异表达、可选剪接转录本的潜在新的免疫治疗癌症靶点。当用于分析卵巢癌(OV)数据集时,CancerDiff发现了一种选择性上调的间皮素(MSLN)剪接变体,该变体被翻译成一种蛋白质异构体(IsoMSLN),该异构体具有典型蛋白序列中缺失的独特肽。为了验证这一预测并确认IsoMSLN在OV中的上调,从公开可用的蛋白质组学数据库中检索数据集,寻找其独特的特征肽。与CancerDiff预测一致,在71%的OV样本和61%的邻近正常组织中检测到IsoMSLN肽。分子建模工具预测该肽是抗体可及区域内蛋白质的细胞外部分的一部分。这些结果表明,IsoMSLN独特肽是OV癌免疫治疗的合适靶点。引文格式:Lucia Piccotti, Leonardo Mirandola, Maurizio Chiriva-Internati。利用Kiromic专有搜索引擎CancerDiff鉴定卵巢癌间皮素选择性剪接变体[摘要]。见:美国癌症研究协会2021年年会论文集;2021年4月10日至15日和5月17日至21日。费城(PA): AACR;癌症杂志,2021;81(13 -增刊):摘要nr 247。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Abstract 247: Identification of an ovarian cancer selective splice variant of mesothelin utilizing the Kiromic proprietary search engine CancerDiff
The advancement of cures for cancer needs the development of novel, more efficacious, and more specific immunotherapeutic approaches through the discovery of novel target candidates displaying differential expression between healthy and malignant tissues. CancerDiff is a proprietary software module for the identification of potential new immunotherapeutic cancer targets that originate from differentially expressed, alternatively spliced transcripts. When utilized to analyze Ovarian Cancer (OV) datasets, CancerDiff identified a selectively upregulated mesothelin (MSLN) splice variant translated into a protein isoform (IsoMSLN) bearing a distinct unique peptide absent in the canonical protein sequence. To validate this prediction and to confirm the upregulation of IsoMSLN in OV, datasets from publicly available proteomic repositories were searched for its unique signature peptide. In agreement with CancerDiff prediction, IsoMSLN peptide was detected in 71% of OV samples and 61% of adjacent normal tissues. Molecular modeling tools predicted this peptide to be part of the extracellular portion of the protein in an antibody accessible region. These results indicate IsoMSLN unique peptide as a suitable target for immunotherapy for OV cancer. Citation Format: Lucia Piccotti, Leonardo Mirandola, Maurizio Chiriva-Internati. Identification of an ovarian cancer selective splice variant of mesothelin utilizing the Kiromic proprietary search engine CancerDiff [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 247.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信