双球上的PFH谱不变量及Hofer度规的大尺度几何

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Daniel Cristofaro-Gardiner, Vincent Humilière, Sobhan Seyfaddini
{"title":"双球上的PFH谱不变量及Hofer度规的大尺度几何","authors":"Daniel Cristofaro-Gardiner, Vincent Humilière, Sobhan Seyfaddini","doi":"10.4171/jems/1351","DOIUrl":null,"url":null,"abstract":"We resolve three longstanding questions related to the large scale geometry of the group of Hamiltonian diffeomorphisms of the two-sphere, equipped with Hofer's metric. Namely: (1) we resolve the Kapovich-Polterovich question by showing that this group is not quasi-isometric to the real line; (2) more generally, we show that the kernel of Calabi over any proper open subset is unbounded; and (3) we show that the group of area and orientation preserving homeomorphisms of the two-sphere is not a simple group. We also obtain, as a corollary, that the group of area-preserving diffeomorphisms of the open disc, equipped with an area-form of finite area, is not perfect. Central to all of our proofs are new sequences of spectral invariants over the two-sphere, defined via periodic Floer homology.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"PFH spectral invariants on the two-sphere and the large scale geometry of Hofer’s metric\",\"authors\":\"Daniel Cristofaro-Gardiner, Vincent Humilière, Sobhan Seyfaddini\",\"doi\":\"10.4171/jems/1351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We resolve three longstanding questions related to the large scale geometry of the group of Hamiltonian diffeomorphisms of the two-sphere, equipped with Hofer's metric. Namely: (1) we resolve the Kapovich-Polterovich question by showing that this group is not quasi-isometric to the real line; (2) more generally, we show that the kernel of Calabi over any proper open subset is unbounded; and (3) we show that the group of area and orientation preserving homeomorphisms of the two-sphere is not a simple group. We also obtain, as a corollary, that the group of area-preserving diffeomorphisms of the open disc, equipped with an area-form of finite area, is not perfect. Central to all of our proofs are new sequences of spectral invariants over the two-sphere, defined via periodic Floer homology.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2021-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/jems/1351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jems/1351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 12

摘要

我们解决了三个长期存在的问题,这些问题与配备Hofer度规的两球哈密顿微分同态群的大尺度几何有关。即:(1)我们通过证明这个群与实线不是拟等距来解决kapoovich - polterovich问题;(2)更一般地,我们证明了Calabi核在任意固有开子集上是无界的;(3)证明了二球的保面积保方向同胚群不是一个简单群。作为一个推论,我们也得到了具有有限面积的面积形式的开盘的保面积微分同态群是不完美的。我们所有证明的核心是通过周期花同调定义的双球上的谱不变量的新序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PFH spectral invariants on the two-sphere and the large scale geometry of Hofer’s metric
We resolve three longstanding questions related to the large scale geometry of the group of Hamiltonian diffeomorphisms of the two-sphere, equipped with Hofer's metric. Namely: (1) we resolve the Kapovich-Polterovich question by showing that this group is not quasi-isometric to the real line; (2) more generally, we show that the kernel of Calabi over any proper open subset is unbounded; and (3) we show that the group of area and orientation preserving homeomorphisms of the two-sphere is not a simple group. We also obtain, as a corollary, that the group of area-preserving diffeomorphisms of the open disc, equipped with an area-form of finite area, is not perfect. Central to all of our proofs are new sequences of spectral invariants over the two-sphere, defined via periodic Floer homology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信