反射三极管的轫致靶优化

S. Swanekamp, B. Weber, S. Stephanakis, D. Mosher
{"title":"反射三极管的轫致靶优化","authors":"S. Swanekamp, B. Weber, S. Stephanakis, D. Mosher","doi":"10.1063/1.2963090","DOIUrl":null,"url":null,"abstract":"Coupled particle-in-cell (PIC) and Monte Carlo simulations of the reflex triode have been performed with tantalum foil thicknesses varying between 2.5 mum (0.0056 times the CSDA range at 1 MeV) to 250 mum (0.56 the CSDA range at 1 MeV). The PIC/Monte Carlo simulations are in good agreement with reflex triode experiments on Gamble II at 1 MV, 1 MA. Experimental measurements and simulations both show that the dose is maximized for a foil thickness of about 20 mum. For foils thicker than 20 mum, the analysis shows that fewer of the 10-100 keV photons escape the foil reducing the dose. For foils thinner than 20 mum, the dose decrease is due to a loss of electron confinement to the foil allowing electrons to drift radially outward and strike a low-atomic-number foil holder which causes the dose to decrease. An examination of the electron orbits shows that for all foil thicknesses electrons initially flow radially inward under the influence of the strong self-magnetic field. If the foil is thick, then electrons lose a significant amount of energy with each interaction with the foil and are absorbed close to the point where they initially interact with the foil. If the foil is thin, electrons lose very little energy with each pass. For very thin foils, the simulations show that, with each pass, the electrons move outward in radius a distance of approximately twice the Larmor radius. Therefore, for thin foils, there are a limited number of passes the electrons can make before moving out of the diode where they strike the foil holder. Based on these results, a formula is derived that is able to predict fairly well the anode thickness that optimizes the dose.","PeriodicalId":6359,"journal":{"name":"2008 IEEE 35th International Conference on Plasma Science","volume":"80 1","pages":"1-1"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Bremmstrahlung target optimization for reflex triodes\",\"authors\":\"S. Swanekamp, B. Weber, S. Stephanakis, D. Mosher\",\"doi\":\"10.1063/1.2963090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coupled particle-in-cell (PIC) and Monte Carlo simulations of the reflex triode have been performed with tantalum foil thicknesses varying between 2.5 mum (0.0056 times the CSDA range at 1 MeV) to 250 mum (0.56 the CSDA range at 1 MeV). The PIC/Monte Carlo simulations are in good agreement with reflex triode experiments on Gamble II at 1 MV, 1 MA. Experimental measurements and simulations both show that the dose is maximized for a foil thickness of about 20 mum. For foils thicker than 20 mum, the analysis shows that fewer of the 10-100 keV photons escape the foil reducing the dose. For foils thinner than 20 mum, the dose decrease is due to a loss of electron confinement to the foil allowing electrons to drift radially outward and strike a low-atomic-number foil holder which causes the dose to decrease. An examination of the electron orbits shows that for all foil thicknesses electrons initially flow radially inward under the influence of the strong self-magnetic field. If the foil is thick, then electrons lose a significant amount of energy with each interaction with the foil and are absorbed close to the point where they initially interact with the foil. If the foil is thin, electrons lose very little energy with each pass. For very thin foils, the simulations show that, with each pass, the electrons move outward in radius a distance of approximately twice the Larmor radius. Therefore, for thin foils, there are a limited number of passes the electrons can make before moving out of the diode where they strike the foil holder. Based on these results, a formula is derived that is able to predict fairly well the anode thickness that optimizes the dose.\",\"PeriodicalId\":6359,\"journal\":{\"name\":\"2008 IEEE 35th International Conference on Plasma Science\",\"volume\":\"80 1\",\"pages\":\"1-1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE 35th International Conference on Plasma Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.2963090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE 35th International Conference on Plasma Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.2963090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

对反射三极管进行了耦合粒子池(PIC)和蒙特卡罗模拟,其中钽箔厚度在2.5 mum (1 MeV时CSDA范围的0.0056倍)到250 mum (1 MeV时CSDA范围的0.56倍)之间变化。PIC/Monte Carlo模拟结果与gamerii上1mv, 1ma的反射三极管实验结果吻合较好。实验测量和模拟结果均表明,当膜厚约为20 μ m时,剂量最大。对于厚度大于20 μ m的箔片,分析表明10-100 keV的光子较少逃离箔片,从而降低了剂量。对于薄于20 μ m的箔片,剂量的减少是由于箔片失去了电子约束,允许电子向外径向漂移并撞击低原子序数的箔片托架,从而导致剂量的减少。对电子轨道的检查表明,对于所有厚度的箔,在强自磁场的影响下,电子最初呈径向向内流动。如果箔很厚,那么电子在每次与箔相互作用时都会损失大量的能量,并且在它们最初与箔相互作用的地方被吸收。如果箔很薄,电子在每次通过时损失很少的能量。对于非常薄的箔,模拟表明,每通过一次,电子向外移动的半径大约是拉莫尔半径的两倍。因此,对于薄箔,有有限数量的通过电子可以使移动出二极管之前,他们击中箔持有人。基于这些结果,导出了一个公式,该公式能够很好地预测最佳剂量的阳极厚度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bremmstrahlung target optimization for reflex triodes
Coupled particle-in-cell (PIC) and Monte Carlo simulations of the reflex triode have been performed with tantalum foil thicknesses varying between 2.5 mum (0.0056 times the CSDA range at 1 MeV) to 250 mum (0.56 the CSDA range at 1 MeV). The PIC/Monte Carlo simulations are in good agreement with reflex triode experiments on Gamble II at 1 MV, 1 MA. Experimental measurements and simulations both show that the dose is maximized for a foil thickness of about 20 mum. For foils thicker than 20 mum, the analysis shows that fewer of the 10-100 keV photons escape the foil reducing the dose. For foils thinner than 20 mum, the dose decrease is due to a loss of electron confinement to the foil allowing electrons to drift radially outward and strike a low-atomic-number foil holder which causes the dose to decrease. An examination of the electron orbits shows that for all foil thicknesses electrons initially flow radially inward under the influence of the strong self-magnetic field. If the foil is thick, then electrons lose a significant amount of energy with each interaction with the foil and are absorbed close to the point where they initially interact with the foil. If the foil is thin, electrons lose very little energy with each pass. For very thin foils, the simulations show that, with each pass, the electrons move outward in radius a distance of approximately twice the Larmor radius. Therefore, for thin foils, there are a limited number of passes the electrons can make before moving out of the diode where they strike the foil holder. Based on these results, a formula is derived that is able to predict fairly well the anode thickness that optimizes the dose.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信