中值定理中“中间点”的灵敏度:一种基于legende - fenchel变换的方法

J. Hiriart-Urruty
{"title":"中值定理中“中间点”的灵敏度:一种基于legende - fenchel变换的方法","authors":"J. Hiriart-Urruty","doi":"10.1051/proc/202171114","DOIUrl":null,"url":null,"abstract":"We study the sensitivity, essentially the differentiability, of the so-called “intermediate point” c in the classical mean value theorem $ \\frac{f(a)-f(b)}{b-a}={f}^{\\prime}(c)$we provide the expression of its gradient ∇c(d,d), thus giving the asymptotic behavior of c(a, b) when both a and b tend to the same point d. Under appropriate mild conditions on f, this result is “universal” in the sense that it does not depend on the point d or the function f. The key tool to get at this result turns out to be the Legendre-Fenchel transformation for convex functions.","PeriodicalId":53260,"journal":{"name":"ESAIM Proceedings and Surveys","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sensitivity of the “intermediate point” in the mean value theorem: an approach via the Legendre-Fenchel transformation\",\"authors\":\"J. Hiriart-Urruty\",\"doi\":\"10.1051/proc/202171114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the sensitivity, essentially the differentiability, of the so-called “intermediate point” c in the classical mean value theorem $ \\\\frac{f(a)-f(b)}{b-a}={f}^{\\\\prime}(c)$we provide the expression of its gradient ∇c(d,d), thus giving the asymptotic behavior of c(a, b) when both a and b tend to the same point d. Under appropriate mild conditions on f, this result is “universal” in the sense that it does not depend on the point d or the function f. The key tool to get at this result turns out to be the Legendre-Fenchel transformation for convex functions.\",\"PeriodicalId\":53260,\"journal\":{\"name\":\"ESAIM Proceedings and Surveys\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ESAIM Proceedings and Surveys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/proc/202171114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESAIM Proceedings and Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/proc/202171114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们研究了经典中值定理$ \frac{f(a)-f(b)}{b-a}={f}^{\素数}(c)$中所谓的“中间点”c的灵敏度,本质上是可微性。我们给出了它的梯度∇c(d,d)的表达式,从而给出了当a和b都趋近于同一点d时c(a, b)的渐近性。这个结果是“全称的”,因为它不依赖于点d或函数f。得到这个结果的关键工具是凸函数的legende - fenchel变换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sensitivity of the “intermediate point” in the mean value theorem: an approach via the Legendre-Fenchel transformation
We study the sensitivity, essentially the differentiability, of the so-called “intermediate point” c in the classical mean value theorem $ \frac{f(a)-f(b)}{b-a}={f}^{\prime}(c)$we provide the expression of its gradient ∇c(d,d), thus giving the asymptotic behavior of c(a, b) when both a and b tend to the same point d. Under appropriate mild conditions on f, this result is “universal” in the sense that it does not depend on the point d or the function f. The key tool to get at this result turns out to be the Legendre-Fenchel transformation for convex functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信