用于高分位数自举的尾部对齐复合分位数估计器

Q4 Mathematics
R. S. Jagtap, Mohan Kale, V. K. Gedam
{"title":"用于高分位数自举的尾部对齐复合分位数估计器","authors":"R. S. Jagtap, Mohan Kale, V. K. Gedam","doi":"10.1080/23737484.2021.1915900","DOIUrl":null,"url":null,"abstract":"Abstract Reliable assessment of high quantiles, namely quantile with relatively low exceedance probability, based on available sample is of interest in hydrology, meteorology, finance and many other fields. Interval estimation of extreme quantities in real-world mechanisms is essential, but it is challenging due to complexities in underlying data-generating processes, small sample sizes, data are not normal, failure of the standard statistical assumptions etc. leading to huge stochastic uncertainties. A composite quantile function estimator aligned using tail of generalized extreme value distribution is employed to construct bootstrap confidence intervals for high-order quantiles. The proposed semi-parametric estimator is shown to be asymptotically unbiased and consistent. The utility of the proposed estimator in comparison with traditional nonparametric and parametric bootstrap in terms of coverage probability for small size and case study application to real-world precipitation datasets has been illustrated. Limitations posed in computations and scope for future work is highlighted.","PeriodicalId":36561,"journal":{"name":"Communications in Statistics Case Studies Data Analysis and Applications","volume":"73 1","pages":"494 - 515"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tail aligned composite quantile estimator for bootstrapping of high quantiles\",\"authors\":\"R. S. Jagtap, Mohan Kale, V. K. Gedam\",\"doi\":\"10.1080/23737484.2021.1915900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Reliable assessment of high quantiles, namely quantile with relatively low exceedance probability, based on available sample is of interest in hydrology, meteorology, finance and many other fields. Interval estimation of extreme quantities in real-world mechanisms is essential, but it is challenging due to complexities in underlying data-generating processes, small sample sizes, data are not normal, failure of the standard statistical assumptions etc. leading to huge stochastic uncertainties. A composite quantile function estimator aligned using tail of generalized extreme value distribution is employed to construct bootstrap confidence intervals for high-order quantiles. The proposed semi-parametric estimator is shown to be asymptotically unbiased and consistent. The utility of the proposed estimator in comparison with traditional nonparametric and parametric bootstrap in terms of coverage probability for small size and case study application to real-world precipitation datasets has been illustrated. Limitations posed in computations and scope for future work is highlighted.\",\"PeriodicalId\":36561,\"journal\":{\"name\":\"Communications in Statistics Case Studies Data Analysis and Applications\",\"volume\":\"73 1\",\"pages\":\"494 - 515\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Statistics Case Studies Data Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23737484.2021.1915900\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Statistics Case Studies Data Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23737484.2021.1915900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

摘要基于现有样本对高分位数(即超出概率相对较低的分位数)进行可靠评估,是水文、气象、金融等诸多领域关注的问题。在现实世界的机制中,极值的区间估计是必不可少的,但由于底层数据生成过程的复杂性、小样本量、数据不正常、标准统计假设的失败等导致巨大的随机不确定性,这是具有挑战性的。利用广义极值分布尾部对齐的复合分位数函数估计量构造高阶分位数的自举置信区间。证明了所提出的半参数估计量是渐近无偏和一致的。与传统的非参数自举和参数自举相比,所提出的估计器在小尺寸的覆盖概率和实际降水数据集的案例研究应用方面的效用已经得到说明。强调了计算中的局限性和未来工作的范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tail aligned composite quantile estimator for bootstrapping of high quantiles
Abstract Reliable assessment of high quantiles, namely quantile with relatively low exceedance probability, based on available sample is of interest in hydrology, meteorology, finance and many other fields. Interval estimation of extreme quantities in real-world mechanisms is essential, but it is challenging due to complexities in underlying data-generating processes, small sample sizes, data are not normal, failure of the standard statistical assumptions etc. leading to huge stochastic uncertainties. A composite quantile function estimator aligned using tail of generalized extreme value distribution is employed to construct bootstrap confidence intervals for high-order quantiles. The proposed semi-parametric estimator is shown to be asymptotically unbiased and consistent. The utility of the proposed estimator in comparison with traditional nonparametric and parametric bootstrap in terms of coverage probability for small size and case study application to real-world precipitation datasets has been illustrated. Limitations posed in computations and scope for future work is highlighted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
29
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信