pyGPs:用于高斯过程回归和分类的Python库

Marion Neumann, Shan Huang, D. Marthaler, K. Kersting
{"title":"pyGPs:用于高斯过程回归和分类的Python库","authors":"Marion Neumann, Shan Huang, D. Marthaler, K. Kersting","doi":"10.5555/2789272.2912082","DOIUrl":null,"url":null,"abstract":"We introduce pyGPs, an object-oriented implementation of Gaussian processes (gps) for machine learning. The library provides a wide range of functionalities reaching from simple gp specification via mean and covariance and gp inference to more complex implementations of hyperparameter optimization, sparse approximations, and graph based learning. Using Python we focus on usability for both \"users\" and \"researchers\". Our main goal is to offer a user-friendly and flexible implementation of GPs for machine learning.","PeriodicalId":14794,"journal":{"name":"J. Mach. Learn. Res.","volume":"6 1","pages":"2611-2616"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"pyGPs: a Python library for Gaussian process regression and classification\",\"authors\":\"Marion Neumann, Shan Huang, D. Marthaler, K. Kersting\",\"doi\":\"10.5555/2789272.2912082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce pyGPs, an object-oriented implementation of Gaussian processes (gps) for machine learning. The library provides a wide range of functionalities reaching from simple gp specification via mean and covariance and gp inference to more complex implementations of hyperparameter optimization, sparse approximations, and graph based learning. Using Python we focus on usability for both \\\"users\\\" and \\\"researchers\\\". Our main goal is to offer a user-friendly and flexible implementation of GPs for machine learning.\",\"PeriodicalId\":14794,\"journal\":{\"name\":\"J. Mach. Learn. Res.\",\"volume\":\"6 1\",\"pages\":\"2611-2616\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Mach. Learn. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5555/2789272.2912082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Mach. Learn. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/2789272.2912082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

我们介绍pyGPs,一个用于机器学习的高斯过程(gps)的面向对象实现。该库提供了广泛的功能,从简单的gp规范(通过均值、协方差和gp推理)到更复杂的超参数优化、稀疏逼近和基于图的学习实现。使用Python时,我们关注的是“用户”和“研究人员”的可用性。我们的主要目标是为机器学习提供一个用户友好和灵活的GPs实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
pyGPs: a Python library for Gaussian process regression and classification
We introduce pyGPs, an object-oriented implementation of Gaussian processes (gps) for machine learning. The library provides a wide range of functionalities reaching from simple gp specification via mean and covariance and gp inference to more complex implementations of hyperparameter optimization, sparse approximations, and graph based learning. Using Python we focus on usability for both "users" and "researchers". Our main goal is to offer a user-friendly and flexible implementation of GPs for machine learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信