关于皮莱的斐波那契数和定素数幂问题的多重性

Pub Date : 2022-07-24 DOI:10.3336/gm.57.2.02
Herbert Batte, Mahadi Ddamulira, Juma Kasozi, F. Luca
{"title":"关于皮莱的斐波那契数和定素数幂问题的多重性","authors":"Herbert Batte, Mahadi Ddamulira, Juma Kasozi, F. Luca","doi":"10.3336/gm.57.2.02","DOIUrl":null,"url":null,"abstract":"Let \\( \\{F_n\\}_{n\\geq 0} \\) be the sequence of Fibonacci numbers and let \\(p\\) be a prime. For an integer \\(c\\) we write \\(m_{F,p}(c)\\) for the number of distinct representations of \\(c\\) as \\(F_k-p^\\ell\\) with \\(k\\ge 2\\) and \\(\\ell\\ge 0\\). We prove that \\(m_{F,p}(c)\\le 4\\).","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the multiplicity in Pillai's problem with Fibonacci numbers and powers of a fixed prime\",\"authors\":\"Herbert Batte, Mahadi Ddamulira, Juma Kasozi, F. Luca\",\"doi\":\"10.3336/gm.57.2.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let \\\\( \\\\{F_n\\\\}_{n\\\\geq 0} \\\\) be the sequence of Fibonacci numbers and let \\\\(p\\\\) be a prime. For an integer \\\\(c\\\\) we write \\\\(m_{F,p}(c)\\\\) for the number of distinct representations of \\\\(c\\\\) as \\\\(F_k-p^\\\\ell\\\\) with \\\\(k\\\\ge 2\\\\) and \\\\(\\\\ell\\\\ge 0\\\\). We prove that \\\\(m_{F,p}(c)\\\\le 4\\\\).\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3336/gm.57.2.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3336/gm.57.2.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

设\( \{F_n\}_{n\geq 0} \)为斐波那契数列,设\(p\)为素数。对于整数\(c\),我们将\(c\)的不同表示形式的数量写成\(m_{F,p}(c)\),例如\(F_k-p^\ell\)与\(k\ge 2\)和\(\ell\ge 0\)。我们证明\(m_{F,p}(c)\le 4\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the multiplicity in Pillai's problem with Fibonacci numbers and powers of a fixed prime
Let \( \{F_n\}_{n\geq 0} \) be the sequence of Fibonacci numbers and let \(p\) be a prime. For an integer \(c\) we write \(m_{F,p}(c)\) for the number of distinct representations of \(c\) as \(F_k-p^\ell\) with \(k\ge 2\) and \(\ell\ge 0\). We prove that \(m_{F,p}(c)\le 4\).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信