Herbert Batte, Mahadi Ddamulira, Juma Kasozi, F. Luca
{"title":"关于皮莱的斐波那契数和定素数幂问题的多重性","authors":"Herbert Batte, Mahadi Ddamulira, Juma Kasozi, F. Luca","doi":"10.3336/gm.57.2.02","DOIUrl":null,"url":null,"abstract":"Let \\( \\{F_n\\}_{n\\geq 0} \\) be the sequence of Fibonacci numbers and let \\(p\\) be a prime. For an integer \\(c\\) we write \\(m_{F,p}(c)\\) for the number of distinct representations of \\(c\\) as \\(F_k-p^\\ell\\) with \\(k\\ge 2\\) and \\(\\ell\\ge 0\\). We prove that \\(m_{F,p}(c)\\le 4\\).","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the multiplicity in Pillai's problem with Fibonacci numbers and powers of a fixed prime\",\"authors\":\"Herbert Batte, Mahadi Ddamulira, Juma Kasozi, F. Luca\",\"doi\":\"10.3336/gm.57.2.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let \\\\( \\\\{F_n\\\\}_{n\\\\geq 0} \\\\) be the sequence of Fibonacci numbers and let \\\\(p\\\\) be a prime. For an integer \\\\(c\\\\) we write \\\\(m_{F,p}(c)\\\\) for the number of distinct representations of \\\\(c\\\\) as \\\\(F_k-p^\\\\ell\\\\) with \\\\(k\\\\ge 2\\\\) and \\\\(\\\\ell\\\\ge 0\\\\). We prove that \\\\(m_{F,p}(c)\\\\le 4\\\\).\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3336/gm.57.2.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3336/gm.57.2.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the multiplicity in Pillai's problem with Fibonacci numbers and powers of a fixed prime
Let \( \{F_n\}_{n\geq 0} \) be the sequence of Fibonacci numbers and let \(p\) be a prime. For an integer \(c\) we write \(m_{F,p}(c)\) for the number of distinct representations of \(c\) as \(F_k-p^\ell\) with \(k\ge 2\) and \(\ell\ge 0\). We prove that \(m_{F,p}(c)\le 4\).