通过特殊多项式得到实零多项式

IF 0.8 4区 数学 Q2 MATHEMATICS
M. Mihoubi, Said Taharbouchet
{"title":"通过特殊多项式得到实零多项式","authors":"M. Mihoubi, Said Taharbouchet","doi":"10.5802/CRMATH.147","DOIUrl":null,"url":null,"abstract":"In this paper, we use particular polynomials to establish some results on the real rootedness of polynomials. The considered polynomials are Bell polynomials and Hermite polynomials. To cite this article: M. Mihoubi and S. Taharbouchet, C. R. Acad. Sci. Paris, Ser. I 340 (2021). Résumé. Dans ce papier, nous utilisons des polynômes particuliers pour établir quelques résultats sur les polynômes à racines réelles. Les polynômes considérés sont des polynômes de Bell et des polynômes de Hermite. Pour citer cet article : M. Mihoubi and S. Taharbouchet, C. R. Acad. Sci. Paris, Ser. I 340 (2021). Manuscript received 3rd November 2019, accepted 6th November 2020.","PeriodicalId":10620,"journal":{"name":"Comptes Rendus Mathematique","volume":"37 1","pages":"57-64"},"PeriodicalIF":0.8000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polynomials with real zeros via special polynomials\",\"authors\":\"M. Mihoubi, Said Taharbouchet\",\"doi\":\"10.5802/CRMATH.147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we use particular polynomials to establish some results on the real rootedness of polynomials. The considered polynomials are Bell polynomials and Hermite polynomials. To cite this article: M. Mihoubi and S. Taharbouchet, C. R. Acad. Sci. Paris, Ser. I 340 (2021). Résumé. Dans ce papier, nous utilisons des polynômes particuliers pour établir quelques résultats sur les polynômes à racines réelles. Les polynômes considérés sont des polynômes de Bell et des polynômes de Hermite. Pour citer cet article : M. Mihoubi and S. Taharbouchet, C. R. Acad. Sci. Paris, Ser. I 340 (2021). Manuscript received 3rd November 2019, accepted 6th November 2020.\",\"PeriodicalId\":10620,\"journal\":{\"name\":\"Comptes Rendus Mathematique\",\"volume\":\"37 1\",\"pages\":\"57-64\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus Mathematique\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/CRMATH.147\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Mathematique","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/CRMATH.147","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

= =地理= =根据美国人口普查,这个县的土地面积为。= =地理= =根据美国人口普查,该县的总面积为,其中土地和(3.064平方公里)水。引用本文:M. Mihoubi和S. Taharbouchet, C. R. Acad. Sci。巴黎,爵士。他的父亲是一名医生,母亲是一名医生。摘要。在这篇论文中,我们使用特殊的多项式来建立一些关于实根多项式的结果。考虑的多项式是贝尔多项式和埃尔米特多项式。引用本文:M. Mihoubi和S. Taharbouchet, c.r. Acad. Sci。巴黎,爵士。他的父亲是一名医生,母亲是一名医生。他的父亲是一名律师,母亲是一名律师。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polynomials with real zeros via special polynomials
In this paper, we use particular polynomials to establish some results on the real rootedness of polynomials. The considered polynomials are Bell polynomials and Hermite polynomials. To cite this article: M. Mihoubi and S. Taharbouchet, C. R. Acad. Sci. Paris, Ser. I 340 (2021). Résumé. Dans ce papier, nous utilisons des polynômes particuliers pour établir quelques résultats sur les polynômes à racines réelles. Les polynômes considérés sont des polynômes de Bell et des polynômes de Hermite. Pour citer cet article : M. Mihoubi and S. Taharbouchet, C. R. Acad. Sci. Paris, Ser. I 340 (2021). Manuscript received 3rd November 2019, accepted 6th November 2020.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
115
审稿时长
16.6 weeks
期刊介绍: The Comptes Rendus - Mathématique cover all fields of the discipline: Logic, Combinatorics, Number Theory, Group Theory, Mathematical Analysis, (Partial) Differential Equations, Geometry, Topology, Dynamical systems, Mathematical Physics, Mathematical Problems in Mechanics, Signal Theory, Mathematical Economics, … Articles are original notes that briefly describe an important discovery or result. The articles are written in French or English. The journal also publishes review papers, thematic issues and texts reflecting the activity of Académie des sciences in the field of Mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信