抓紧器

Hongzhi Chen, Changji Li, Juncheng Fang, Chenghuan Huang, James Cheng, Jian Zhang, Yifan Hou, Xiao Yan
{"title":"抓紧器","authors":"Hongzhi Chen, Changji Li, Juncheng Fang, Chenghuan Huang, James Cheng, Jian Zhang, Yifan Hou, Xiao Yan","doi":"10.1145/3357223.3362715","DOIUrl":null,"url":null,"abstract":"The property graph (PG) model is one of the most general graph data model and has been widely adopted in many graph analytics and processing systems. However, existing systems suffer from poor performance in terms of both latency and throughput for processing online analytical workloads on PGs due to their design defects such as expensive interactions with external databases, low parallelism, and high network overheads. In this paper, we propose Grasper, a high performance distributed system for OLAP on property graphs. Grasper adopts RDMA-aware system designs to reduce the network communication cost. We propose a novel query execution model, called Expert Model, which supports adaptive parallelism control at the fine-grained query operation level and allows tailored optimizations for different categories of query operators, thus achieving high parallelism and good load balancing. Experimental results show that Grasper achieves low latency and high throughput on a broad range of online analytical workloads.","PeriodicalId":91949,"journal":{"name":"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Grasper\",\"authors\":\"Hongzhi Chen, Changji Li, Juncheng Fang, Chenghuan Huang, James Cheng, Jian Zhang, Yifan Hou, Xiao Yan\",\"doi\":\"10.1145/3357223.3362715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The property graph (PG) model is one of the most general graph data model and has been widely adopted in many graph analytics and processing systems. However, existing systems suffer from poor performance in terms of both latency and throughput for processing online analytical workloads on PGs due to their design defects such as expensive interactions with external databases, low parallelism, and high network overheads. In this paper, we propose Grasper, a high performance distributed system for OLAP on property graphs. Grasper adopts RDMA-aware system designs to reduce the network communication cost. We propose a novel query execution model, called Expert Model, which supports adaptive parallelism control at the fine-grained query operation level and allows tailored optimizations for different categories of query operators, thus achieving high parallelism and good load balancing. Experimental results show that Grasper achieves low latency and high throughput on a broad range of online analytical workloads.\",\"PeriodicalId\":91949,\"journal\":{\"name\":\"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3357223.3362715\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3357223.3362715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Grasper
The property graph (PG) model is one of the most general graph data model and has been widely adopted in many graph analytics and processing systems. However, existing systems suffer from poor performance in terms of both latency and throughput for processing online analytical workloads on PGs due to their design defects such as expensive interactions with external databases, low parallelism, and high network overheads. In this paper, we propose Grasper, a high performance distributed system for OLAP on property graphs. Grasper adopts RDMA-aware system designs to reduce the network communication cost. We propose a novel query execution model, called Expert Model, which supports adaptive parallelism control at the fine-grained query operation level and allows tailored optimizations for different categories of query operators, thus achieving high parallelism and good load balancing. Experimental results show that Grasper achieves low latency and high throughput on a broad range of online analytical workloads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信