有限完全k闭群

D. Churikov, C. Praeger
{"title":"有限完全k闭群","authors":"D. Churikov, C. Praeger","doi":"10.21538/0134-4889-2021-27-1-240-245","DOIUrl":null,"url":null,"abstract":"For a positive integer $k$, a group $G$ is said to be totally $k$-closed if in each of its faithful permutation representations, say on a set $\\Omega$, $G$ is the largest subgroup of $\\operatorname{Sym}(\\Omega)$ which leaves invariant each of the $G$-orbits in the induced action on $\\Omega\\times\\dots\\times \\Omega=\\Omega^k$. We prove that every abelian group $G$ is totally $(n(G)+1)$-closed, but is not totally $n(G)$-closed, where $n(G)$ is the number of invariant factors in the invariant factor decomposition of $G$. In particular, we prove that for each $k\\geq2$ and each prime $p$, there are infinitely many finite abelian $p$-groups which are totally $k$-closed but not totally $(k-1)$-closed. This result in the special case $k=2$ is due to Abdollahi and Arezoomand. We pose several open questions about total $k$-closure.","PeriodicalId":8427,"journal":{"name":"arXiv: Group Theory","volume":"70 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Finite totally k-closed groups\",\"authors\":\"D. Churikov, C. Praeger\",\"doi\":\"10.21538/0134-4889-2021-27-1-240-245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a positive integer $k$, a group $G$ is said to be totally $k$-closed if in each of its faithful permutation representations, say on a set $\\\\Omega$, $G$ is the largest subgroup of $\\\\operatorname{Sym}(\\\\Omega)$ which leaves invariant each of the $G$-orbits in the induced action on $\\\\Omega\\\\times\\\\dots\\\\times \\\\Omega=\\\\Omega^k$. We prove that every abelian group $G$ is totally $(n(G)+1)$-closed, but is not totally $n(G)$-closed, where $n(G)$ is the number of invariant factors in the invariant factor decomposition of $G$. In particular, we prove that for each $k\\\\geq2$ and each prime $p$, there are infinitely many finite abelian $p$-groups which are totally $k$-closed but not totally $(k-1)$-closed. This result in the special case $k=2$ is due to Abdollahi and Arezoomand. We pose several open questions about total $k$-closure.\",\"PeriodicalId\":8427,\"journal\":{\"name\":\"arXiv: Group Theory\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21538/0134-4889-2021-27-1-240-245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21538/0134-4889-2021-27-1-240-245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

对于一个正整数$k$,如果在它的每一个忠实的排列表示中,比如在一个集合$\Omega$上,$G$是$\operatorname{Sym}(\Omega)$的最大的子群,并且在$\Omega\times\dots\times \Omega=\Omega^k$的诱导作用中每个$G$轨道都保持不变,则称群$G$是完全$k$闭的。证明了每个阿贝尔群$G$是完全$(n(G)+1)$ -闭的,但不是完全$n(G)$ -闭的,其中$n(G)$为$G$不变因子分解中不变因子的个数。特别地,我们证明了对于每一个$k\geq2$和每一个质数$p$,存在无穷多个完全$k$ -闭但不完全$(k-1)$ -闭的有限阿贝尔$p$ -群。这种特殊情况$k=2$的结果是由于阿卜杜拉希和阿雷佐曼。我们提出了几个关于$k$ -关闭的开放性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite totally k-closed groups
For a positive integer $k$, a group $G$ is said to be totally $k$-closed if in each of its faithful permutation representations, say on a set $\Omega$, $G$ is the largest subgroup of $\operatorname{Sym}(\Omega)$ which leaves invariant each of the $G$-orbits in the induced action on $\Omega\times\dots\times \Omega=\Omega^k$. We prove that every abelian group $G$ is totally $(n(G)+1)$-closed, but is not totally $n(G)$-closed, where $n(G)$ is the number of invariant factors in the invariant factor decomposition of $G$. In particular, we prove that for each $k\geq2$ and each prime $p$, there are infinitely many finite abelian $p$-groups which are totally $k$-closed but not totally $(k-1)$-closed. This result in the special case $k=2$ is due to Abdollahi and Arezoomand. We pose several open questions about total $k$-closure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信