阿斯特罗

IF 3.5 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Riccardo Petrolo, Zhambyl Shaikhanov, Yingyan Lin, E. Knightly
{"title":"阿斯特罗","authors":"Riccardo Petrolo, Zhambyl Shaikhanov, Yingyan Lin, E. Knightly","doi":"10.1145/3464942","DOIUrl":null,"url":null,"abstract":"We present the design, implementation, and experimental evaluation of ASTRO, a modular end-to-end system for distributed sensing missions with autonomous networked drones. We introduce the fundamental system architecture features that enable agnostic sensing missions on top of the ASTRO drones. We demonstrate the key principles of ASTRO by using on-board software-defined radios to find and track a mobile radio target. We show how simple distributed on-board machine learning methods can be used to find and track a mobile target, even if all drones lose contact with a ground control. Also, we show that ASTRO is able to find the target even if it is hiding under a three-ton concrete slab, representing a highly irregular propagation environment. Our findings reveal that, despite no prior training and noisy sensory measurements, ASTRO drones are able to learn the propagation environment in the scale of seconds and localize a target with a mean accuracy of 8 m. Moreover, ASTRO drones are able to track the target with relatively constant error over time, even as it moves at a speed close to the maximum drone speed.","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":"54 1","pages":"1 - 22"},"PeriodicalIF":3.5000,"publicationDate":"2021-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"155","resultStr":"{\"title\":\"ASTRO\",\"authors\":\"Riccardo Petrolo, Zhambyl Shaikhanov, Yingyan Lin, E. Knightly\",\"doi\":\"10.1145/3464942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the design, implementation, and experimental evaluation of ASTRO, a modular end-to-end system for distributed sensing missions with autonomous networked drones. We introduce the fundamental system architecture features that enable agnostic sensing missions on top of the ASTRO drones. We demonstrate the key principles of ASTRO by using on-board software-defined radios to find and track a mobile radio target. We show how simple distributed on-board machine learning methods can be used to find and track a mobile target, even if all drones lose contact with a ground control. Also, we show that ASTRO is able to find the target even if it is hiding under a three-ton concrete slab, representing a highly irregular propagation environment. Our findings reveal that, despite no prior training and noisy sensory measurements, ASTRO drones are able to learn the propagation environment in the scale of seconds and localize a target with a mean accuracy of 8 m. Moreover, ASTRO drones are able to track the target with relatively constant error over time, even as it moves at a speed close to the maximum drone speed.\",\"PeriodicalId\":29764,\"journal\":{\"name\":\"ACM Transactions on Internet of Things\",\"volume\":\"54 1\",\"pages\":\"1 - 22\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2021-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"155\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Internet of Things\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3464942\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3464942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 155

摘要

我们介绍了ASTRO的设计、实现和实验评估,ASTRO是一个模块化的端到端系统,用于自主联网无人机的分布式传感任务。我们介绍了在ASTRO无人机上实现不可知论传感任务的基本系统架构特征。我们通过使用机载软件定义无线电来发现和跟踪移动无线电目标来演示ASTRO的关键原理。我们展示了如何使用简单的分布式机载机器学习方法来查找和跟踪移动目标,即使所有无人机都与地面控制失去联系。此外,我们还展示了ASTRO能够找到目标,即使它隐藏在3吨重的混凝土板下,这代表了一个高度不规则的传播环境。我们的研究结果表明,尽管没有事先的训练和嘈杂的感官测量,ASTRO无人机能够在秒的尺度上学习传播环境,并以8米的平均精度定位目标。此外,ASTRO无人机能够在一段时间内以相对恒定的误差跟踪目标,即使它以接近无人机最大速度的速度移动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ASTRO
We present the design, implementation, and experimental evaluation of ASTRO, a modular end-to-end system for distributed sensing missions with autonomous networked drones. We introduce the fundamental system architecture features that enable agnostic sensing missions on top of the ASTRO drones. We demonstrate the key principles of ASTRO by using on-board software-defined radios to find and track a mobile radio target. We show how simple distributed on-board machine learning methods can be used to find and track a mobile target, even if all drones lose contact with a ground control. Also, we show that ASTRO is able to find the target even if it is hiding under a three-ton concrete slab, representing a highly irregular propagation environment. Our findings reveal that, despite no prior training and noisy sensory measurements, ASTRO drones are able to learn the propagation environment in the scale of seconds and localize a target with a mean accuracy of 8 m. Moreover, ASTRO drones are able to track the target with relatively constant error over time, even as it moves at a speed close to the maximum drone speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.20
自引率
3.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信