Ivonne Domínguez , Rafael A. Barrio , Carmen Varea , José Luis Aragón
{"title":"单波在心脏传播的模型","authors":"Ivonne Domínguez , Rafael A. Barrio , Carmen Varea , José Luis Aragón","doi":"10.1016/S1405-888X(13)72079-5","DOIUrl":null,"url":null,"abstract":"<div><p>In cardiac electrical activity, different types of waves meander through the heart. We present a model of the electrical activity of the heart that proposes that the homogeneous wave fronts propagating through the heart are in fact solitons. We use a general set of reaction-diffusion equations known as the Barrio-Varea-Aragón-Maini (BVAM) model<sup>[</sup><sup>1</sup><sup>]</sup> that presents a wealth of non-linear bifurcations, and we are able to follow the route to chaos, using a mapping of the amplitude equations to the dynamics of the complex Ginzburg-Landau equation. We study the dynamics of wave fronts numerically in the BVAM model to describe the mechanisms leading to heart fibrillation and compare the findings with experimental data.</p></div>","PeriodicalId":31507,"journal":{"name":"TIP Revista Especializada en Ciencias QuimicoBiologicas","volume":"16 2","pages":"Pages 79-92"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1405-888X(13)72079-5","citationCount":"0","resultStr":"{\"title\":\"Modelo de propagación de ondas solitarias en el corazón\",\"authors\":\"Ivonne Domínguez , Rafael A. Barrio , Carmen Varea , José Luis Aragón\",\"doi\":\"10.1016/S1405-888X(13)72079-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In cardiac electrical activity, different types of waves meander through the heart. We present a model of the electrical activity of the heart that proposes that the homogeneous wave fronts propagating through the heart are in fact solitons. We use a general set of reaction-diffusion equations known as the Barrio-Varea-Aragón-Maini (BVAM) model<sup>[</sup><sup>1</sup><sup>]</sup> that presents a wealth of non-linear bifurcations, and we are able to follow the route to chaos, using a mapping of the amplitude equations to the dynamics of the complex Ginzburg-Landau equation. We study the dynamics of wave fronts numerically in the BVAM model to describe the mechanisms leading to heart fibrillation and compare the findings with experimental data.</p></div>\",\"PeriodicalId\":31507,\"journal\":{\"name\":\"TIP Revista Especializada en Ciencias QuimicoBiologicas\",\"volume\":\"16 2\",\"pages\":\"Pages 79-92\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1405-888X(13)72079-5\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TIP Revista Especializada en Ciencias QuimicoBiologicas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1405888X13720795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TIP Revista Especializada en Ciencias QuimicoBiologicas","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1405888X13720795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modelo de propagación de ondas solitarias en el corazón
In cardiac electrical activity, different types of waves meander through the heart. We present a model of the electrical activity of the heart that proposes that the homogeneous wave fronts propagating through the heart are in fact solitons. We use a general set of reaction-diffusion equations known as the Barrio-Varea-Aragón-Maini (BVAM) model[1] that presents a wealth of non-linear bifurcations, and we are able to follow the route to chaos, using a mapping of the amplitude equations to the dynamics of the complex Ginzburg-Landau equation. We study the dynamics of wave fronts numerically in the BVAM model to describe the mechanisms leading to heart fibrillation and compare the findings with experimental data.