{"title":"随机矩阵的最优和算法范数正则化","authors":"Vishesh Jain, A. Sah, Mehtaab Sawhney","doi":"10.1090/proc/15964","DOIUrl":null,"url":null,"abstract":"Let $A$ be an $n\\times n$ random matrix whose entries are i.i.d. with mean $0$ and variance $1$. We present a deterministic polynomial time algorithm which, with probability at least $1-2\\exp(-\\Omega(\\epsilon n))$ in the choice of $A$, finds an $\\epsilon n \\times \\epsilon n$ sub-matrix such that zeroing it out results in $\\widetilde{A}$ with \\[\\|\\widetilde{A}\\| = O\\left(\\sqrt{n/\\epsilon}\\right).\\] Our result is optimal up to a constant factor and improves previous results of Rebrova and Vershynin, and Rebrova. We also prove an analogous result for $A$ a symmetric $n\\times n$ random matrix whose upper-diagonal entries are i.i.d. with mean $0$ and variance $1$.","PeriodicalId":8470,"journal":{"name":"arXiv: Probability","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal and algorithmic norm regularization of random matrices\",\"authors\":\"Vishesh Jain, A. Sah, Mehtaab Sawhney\",\"doi\":\"10.1090/proc/15964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $A$ be an $n\\\\times n$ random matrix whose entries are i.i.d. with mean $0$ and variance $1$. We present a deterministic polynomial time algorithm which, with probability at least $1-2\\\\exp(-\\\\Omega(\\\\epsilon n))$ in the choice of $A$, finds an $\\\\epsilon n \\\\times \\\\epsilon n$ sub-matrix such that zeroing it out results in $\\\\widetilde{A}$ with \\\\[\\\\|\\\\widetilde{A}\\\\| = O\\\\left(\\\\sqrt{n/\\\\epsilon}\\\\right).\\\\] Our result is optimal up to a constant factor and improves previous results of Rebrova and Vershynin, and Rebrova. We also prove an analogous result for $A$ a symmetric $n\\\\times n$ random matrix whose upper-diagonal entries are i.i.d. with mean $0$ and variance $1$.\",\"PeriodicalId\":8470,\"journal\":{\"name\":\"arXiv: Probability\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/15964\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/proc/15964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
设$A$为一个$n\times n$随机矩阵,其项为i.i.d.,均值为$0$,方差为$1$。我们提出了一种确定性多项式时间算法,该算法在$A$的选择中至少以$1-2\exp(-\Omega(\epsilon n))$的概率找到$\epsilon n \times \epsilon n$子矩阵,使得在$\widetilde{A}$中使用\[\|\widetilde{A}\| = O\left(\sqrt{n/\epsilon}\right).\]将其归零。我们的结果是最优的,直到一个常数因子,并改进了以前的Rebrova和Vershynin以及Rebrova的结果。对于一个对称的$n\times n$随机矩阵$A$,我们也证明了一个类似的结果,该矩阵的上对角线项为i.i.d,均值为$0$,方差为$1$。
Optimal and algorithmic norm regularization of random matrices
Let $A$ be an $n\times n$ random matrix whose entries are i.i.d. with mean $0$ and variance $1$. We present a deterministic polynomial time algorithm which, with probability at least $1-2\exp(-\Omega(\epsilon n))$ in the choice of $A$, finds an $\epsilon n \times \epsilon n$ sub-matrix such that zeroing it out results in $\widetilde{A}$ with \[\|\widetilde{A}\| = O\left(\sqrt{n/\epsilon}\right).\] Our result is optimal up to a constant factor and improves previous results of Rebrova and Vershynin, and Rebrova. We also prove an analogous result for $A$ a symmetric $n\times n$ random matrix whose upper-diagonal entries are i.i.d. with mean $0$ and variance $1$.