{"title":"动态生产环境下的炼钢连铸生产调度问题","authors":"Zhong Zheng , Jian-yu Long , Xiao-qiang Gao","doi":"10.1016/S1006-706X(17)30089-4","DOIUrl":null,"url":null,"abstract":"<div><p>A concept of production scenario for the steelmaking-continuous casting production process and the mathematical description of such concept were proposed. The production scenario was described with the variation of the equipment status and the production material properties based on the executing production schedule. Then, the dynamic characteristics of the production process could be described with the evolution process of production scenario. Through analyzing the influence of the dynamic production scenario on production scheduling, three key points about the scheduling problems were identified: the problem for integrating the schedules of different batches that is non-neglected when making a schedule, the problem for matching the material flow with the schedule that should be solved when implementing a schedule, and the problem for eliminating the deviations between the initial schedule and implemented schedule that should be solved when rescheduling in a disturbed environment. Finally, a set of experiments were conducted, and the results demonstrated that making the production schedule and solving the rescheduling problem for steelmaking-continuous casting process with addressing the above three problems improve the adaptability of the schedule in dynamic environment.</p></div>","PeriodicalId":64470,"journal":{"name":"Journal of Iron and Steel Research(International)","volume":"24 6","pages":"Pages 586-594"},"PeriodicalIF":3.1000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1006-706X(17)30089-4","citationCount":"11","resultStr":"{\"title\":\"Production scheduling problems of steelmaking-continuous casting process in dynamic production environment\",\"authors\":\"Zhong Zheng , Jian-yu Long , Xiao-qiang Gao\",\"doi\":\"10.1016/S1006-706X(17)30089-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A concept of production scenario for the steelmaking-continuous casting production process and the mathematical description of such concept were proposed. The production scenario was described with the variation of the equipment status and the production material properties based on the executing production schedule. Then, the dynamic characteristics of the production process could be described with the evolution process of production scenario. Through analyzing the influence of the dynamic production scenario on production scheduling, three key points about the scheduling problems were identified: the problem for integrating the schedules of different batches that is non-neglected when making a schedule, the problem for matching the material flow with the schedule that should be solved when implementing a schedule, and the problem for eliminating the deviations between the initial schedule and implemented schedule that should be solved when rescheduling in a disturbed environment. Finally, a set of experiments were conducted, and the results demonstrated that making the production schedule and solving the rescheduling problem for steelmaking-continuous casting process with addressing the above three problems improve the adaptability of the schedule in dynamic environment.</p></div>\",\"PeriodicalId\":64470,\"journal\":{\"name\":\"Journal of Iron and Steel Research(International)\",\"volume\":\"24 6\",\"pages\":\"Pages 586-594\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1006-706X(17)30089-4\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Iron and Steel Research(International)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1006706X17300894\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Iron and Steel Research(International)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1006706X17300894","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Production scheduling problems of steelmaking-continuous casting process in dynamic production environment
A concept of production scenario for the steelmaking-continuous casting production process and the mathematical description of such concept were proposed. The production scenario was described with the variation of the equipment status and the production material properties based on the executing production schedule. Then, the dynamic characteristics of the production process could be described with the evolution process of production scenario. Through analyzing the influence of the dynamic production scenario on production scheduling, three key points about the scheduling problems were identified: the problem for integrating the schedules of different batches that is non-neglected when making a schedule, the problem for matching the material flow with the schedule that should be solved when implementing a schedule, and the problem for eliminating the deviations between the initial schedule and implemented schedule that should be solved when rescheduling in a disturbed environment. Finally, a set of experiments were conducted, and the results demonstrated that making the production schedule and solving the rescheduling problem for steelmaking-continuous casting process with addressing the above three problems improve the adaptability of the schedule in dynamic environment.