一种用于实时心电心跳检测的深度学习混合方法

IF 1.6 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS
K. K. Patro, A. J. Prakash, S. Samantray, Joanna Plawiak, R. Tadeusiewicz, Paweł Pławiak
{"title":"一种用于实时心电心跳检测的深度学习混合方法","authors":"K. K. Patro, A. J. Prakash, S. Samantray, Joanna Plawiak, R. Tadeusiewicz, Paweł Pławiak","doi":"10.34768/amcs-2022-0033","DOIUrl":null,"url":null,"abstract":"Abstract This paper presents a new customized hybrid approach for early detection of cardiac abnormalities using an electrocardiogram (ECG). The ECG is a bioelectrical signal that helps monitor the heart’s electrical activity. It can provide health information about the normal and abnormal physiology of the heart. Early diagnosis of cardiac abnormalities is critical for cardiac patients to avoid stroke or sudden cardiac death. The main aim of this paper is to detect crucial beats that can damage the functioning of the heart. Initially, a modified Pan–Tompkins algorithm identifies the characteristic points, followed by heartbeat segmentation. Subsequently, a different hybrid deep convolutional neural network (CNN) is proposed to experiment on standard and real-time long-term ECG databases. This work successfully classifies several cardiac beat abnormalities such as supra-ventricular ectopic beats (SVE), ventricular beats (VE), intra-ventricular conduction disturbances beats (IVCD), and normal beats (N). The obtained classification results show a better accuracy of 99.28% with an F1score of 99.24% with the MIT–BIH database and a descent accuracy of 99.12% with the real-time acquired database.","PeriodicalId":50339,"journal":{"name":"International Journal of Applied Mathematics and Computer Science","volume":"20 1","pages":"455 - 465"},"PeriodicalIF":1.6000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"A Hybrid Approach of a Deep Learning Technique for Real–Time ECG Beat Detection\",\"authors\":\"K. K. Patro, A. J. Prakash, S. Samantray, Joanna Plawiak, R. Tadeusiewicz, Paweł Pławiak\",\"doi\":\"10.34768/amcs-2022-0033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper presents a new customized hybrid approach for early detection of cardiac abnormalities using an electrocardiogram (ECG). The ECG is a bioelectrical signal that helps monitor the heart’s electrical activity. It can provide health information about the normal and abnormal physiology of the heart. Early diagnosis of cardiac abnormalities is critical for cardiac patients to avoid stroke or sudden cardiac death. The main aim of this paper is to detect crucial beats that can damage the functioning of the heart. Initially, a modified Pan–Tompkins algorithm identifies the characteristic points, followed by heartbeat segmentation. Subsequently, a different hybrid deep convolutional neural network (CNN) is proposed to experiment on standard and real-time long-term ECG databases. This work successfully classifies several cardiac beat abnormalities such as supra-ventricular ectopic beats (SVE), ventricular beats (VE), intra-ventricular conduction disturbances beats (IVCD), and normal beats (N). The obtained classification results show a better accuracy of 99.28% with an F1score of 99.24% with the MIT–BIH database and a descent accuracy of 99.12% with the real-time acquired database.\",\"PeriodicalId\":50339,\"journal\":{\"name\":\"International Journal of Applied Mathematics and Computer Science\",\"volume\":\"20 1\",\"pages\":\"455 - 465\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mathematics and Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.34768/amcs-2022-0033\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.34768/amcs-2022-0033","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 15

摘要

摘要本文提出了一种新的定制混合方法,用于使用心电图(ECG)早期检测心脏异常。心电图是一种生物电信号,有助于监测心脏的电活动。它可以提供关于心脏正常和异常生理的健康信息。心脏异常的早期诊断对于心脏病患者避免中风或心源性猝死至关重要。本文的主要目的是检测可能损害心脏功能的关键节拍。首先,改进的Pan-Tompkins算法识别特征点,然后进行心跳分割。随后,提出了一种不同的混合深度卷积神经网络(CNN)在标准和实时长期心电数据库上进行实验。本文成功地对室性上异位搏(SVE)、室性搏(VE)、室性内传导干扰搏(IVCD)和正常搏(N)等几种心跳异常进行了分类。分类结果表明,使用MIT-BIH数据库的准确率为99.28%,F1score为99.24%,使用实时获取的数据库的下降准确率为99.12%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Hybrid Approach of a Deep Learning Technique for Real–Time ECG Beat Detection
Abstract This paper presents a new customized hybrid approach for early detection of cardiac abnormalities using an electrocardiogram (ECG). The ECG is a bioelectrical signal that helps monitor the heart’s electrical activity. It can provide health information about the normal and abnormal physiology of the heart. Early diagnosis of cardiac abnormalities is critical for cardiac patients to avoid stroke or sudden cardiac death. The main aim of this paper is to detect crucial beats that can damage the functioning of the heart. Initially, a modified Pan–Tompkins algorithm identifies the characteristic points, followed by heartbeat segmentation. Subsequently, a different hybrid deep convolutional neural network (CNN) is proposed to experiment on standard and real-time long-term ECG databases. This work successfully classifies several cardiac beat abnormalities such as supra-ventricular ectopic beats (SVE), ventricular beats (VE), intra-ventricular conduction disturbances beats (IVCD), and normal beats (N). The obtained classification results show a better accuracy of 99.28% with an F1score of 99.24% with the MIT–BIH database and a descent accuracy of 99.12% with the real-time acquired database.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
21.10%
发文量
0
审稿时长
4.2 months
期刊介绍: The International Journal of Applied Mathematics and Computer Science is a quarterly published in Poland since 1991 by the University of Zielona Góra in partnership with De Gruyter Poland (Sciendo) and Lubuskie Scientific Society, under the auspices of the Committee on Automatic Control and Robotics of the Polish Academy of Sciences. The journal strives to meet the demand for the presentation of interdisciplinary research in various fields related to control theory, applied mathematics, scientific computing and computer science. In particular, it publishes high quality original research results in the following areas: -modern control theory and practice- artificial intelligence methods and their applications- applied mathematics and mathematical optimisation techniques- mathematical methods in engineering, computer science, and biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信