差转中子星的最大质量和稳定性

Q4 Physics and Astronomy
P. Szewczyk, Dorota Gondek-Rosi'nska, P. Cerd'a-Dur'an
{"title":"差转中子星的最大质量和稳定性","authors":"P. Szewczyk, Dorota Gondek-Rosi'nska, P. Cerd'a-Dur'an","doi":"10.5506/aphyspolbsupp.16.6-a8","DOIUrl":null,"url":null,"abstract":"We present our study of stability of differentially rotating, axisymmetric neutron stars described by a polytropic equation of state with $\\Gamma = 2$. We focus on quasi-toroidal solutions with a degree of differential rotation $\\widetilde A=1$. Our results show that for a wide range of parameters hypermassive, quasi-toroidal neutron stars are dynamically stable against quasi-radial perturbations, which may have implications for newly born neutron stars and binary neutron stars mergers.","PeriodicalId":39158,"journal":{"name":"Acta Physica Polonica B, Proceedings Supplement","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Maximum Mass and Stability of Differentially Rotating Neutrons Stars\",\"authors\":\"P. Szewczyk, Dorota Gondek-Rosi'nska, P. Cerd'a-Dur'an\",\"doi\":\"10.5506/aphyspolbsupp.16.6-a8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present our study of stability of differentially rotating, axisymmetric neutron stars described by a polytropic equation of state with $\\\\Gamma = 2$. We focus on quasi-toroidal solutions with a degree of differential rotation $\\\\widetilde A=1$. Our results show that for a wide range of parameters hypermassive, quasi-toroidal neutron stars are dynamically stable against quasi-radial perturbations, which may have implications for newly born neutron stars and binary neutron stars mergers.\",\"PeriodicalId\":39158,\"journal\":{\"name\":\"Acta Physica Polonica B, Proceedings Supplement\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Physica Polonica B, Proceedings Supplement\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5506/aphyspolbsupp.16.6-a8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physica Polonica B, Proceedings Supplement","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5506/aphyspolbsupp.16.6-a8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 1

摘要

我们研究了用多元状态方程$\Gamma = 2$描述的微分旋转轴对称中子星的稳定性。我们关注具有微分旋转度a =1的拟环面解。我们的研究结果表明,对于大范围的参数,超大质量、准环形中子星在准径向扰动下是动态稳定的,这可能对新生中子星和双中子星合并有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximum Mass and Stability of Differentially Rotating Neutrons Stars
We present our study of stability of differentially rotating, axisymmetric neutron stars described by a polytropic equation of state with $\Gamma = 2$. We focus on quasi-toroidal solutions with a degree of differential rotation $\widetilde A=1$. Our results show that for a wide range of parameters hypermassive, quasi-toroidal neutron stars are dynamically stable against quasi-radial perturbations, which may have implications for newly born neutron stars and binary neutron stars mergers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Physica Polonica B, Proceedings Supplement
Acta Physica Polonica B, Proceedings Supplement Physics and Astronomy-Physics and Astronomy (all)
CiteScore
0.50
自引率
0.00%
发文量
67
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信