基于改进YOLOv3的x射线下危险品检测识别方法

Hong Zhang, Boyuan Xue, Qiang Zhi, Yiwen Fu, Lingfei Han, Qing Zhang, Chao Zhang
{"title":"基于改进YOLOv3的x射线下危险品检测识别方法","authors":"Hong Zhang, Boyuan Xue, Qiang Zhi, Yiwen Fu, Lingfei Han, Qing Zhang, Chao Zhang","doi":"10.1109/SSCI44817.2019.9003131","DOIUrl":null,"url":null,"abstract":"X-ray safety inspection equipment is widely used in various public places for the detection of dangerous goods. At present, X-ray safety inspections mostly rely on manual inspections, so the detection efficiency is unsatisfactory. In the field of image detection technology, the deep learning based method has the advantages of low cost and simple configuration. In this paper ,we propose More Scales You Only Look Once version 3 (MS-YOLOv3) to detect and identify dangerous goods under X-ray.MS-YOLOv3 optimize the original You Only Look Once version 3 (YOLOv3) network structure by means of residual network and multi-scale fusion, improve the loss function and use the dangerous goods dataset under X-ray for training and testing. The experimental results show that the mAP of the optimized method is 7.08% higher than YOLOv3.","PeriodicalId":6729,"journal":{"name":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"51 1","pages":"2747-2752"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Detection and Identification Method of Dangerous Goods under X-ray Based on Improved YOLOv3\",\"authors\":\"Hong Zhang, Boyuan Xue, Qiang Zhi, Yiwen Fu, Lingfei Han, Qing Zhang, Chao Zhang\",\"doi\":\"10.1109/SSCI44817.2019.9003131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"X-ray safety inspection equipment is widely used in various public places for the detection of dangerous goods. At present, X-ray safety inspections mostly rely on manual inspections, so the detection efficiency is unsatisfactory. In the field of image detection technology, the deep learning based method has the advantages of low cost and simple configuration. In this paper ,we propose More Scales You Only Look Once version 3 (MS-YOLOv3) to detect and identify dangerous goods under X-ray.MS-YOLOv3 optimize the original You Only Look Once version 3 (YOLOv3) network structure by means of residual network and multi-scale fusion, improve the loss function and use the dangerous goods dataset under X-ray for training and testing. The experimental results show that the mAP of the optimized method is 7.08% higher than YOLOv3.\",\"PeriodicalId\":6729,\"journal\":{\"name\":\"2019 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":\"51 1\",\"pages\":\"2747-2752\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI44817.2019.9003131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI44817.2019.9003131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

x射线安全检查设备广泛应用于各种公共场所,用于检测危险物品。目前,x射线安全检查大多依靠人工检查,检测效率差强人意。在图像检测技术领域,基于深度学习的方法具有成本低、配置简单等优点。在本文中,我们提出了更多的尺度你只看一次版本3 (MS-YOLOv3)来检测和识别x射线下的危险品。MS-YOLOv3通过残差网络和多尺度融合对原来的You Only Look Once version 3 (YOLOv3)网络结构进行优化,改进损失函数,并使用x射线下的危险品数据集进行训练和测试。实验结果表明,优化方法的mAP比YOLOv3提高了7.08%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection and Identification Method of Dangerous Goods under X-ray Based on Improved YOLOv3
X-ray safety inspection equipment is widely used in various public places for the detection of dangerous goods. At present, X-ray safety inspections mostly rely on manual inspections, so the detection efficiency is unsatisfactory. In the field of image detection technology, the deep learning based method has the advantages of low cost and simple configuration. In this paper ,we propose More Scales You Only Look Once version 3 (MS-YOLOv3) to detect and identify dangerous goods under X-ray.MS-YOLOv3 optimize the original You Only Look Once version 3 (YOLOv3) network structure by means of residual network and multi-scale fusion, improve the loss function and use the dangerous goods dataset under X-ray for training and testing. The experimental results show that the mAP of the optimized method is 7.08% higher than YOLOv3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信