{"title":"有边界流形上曲率的正性","authors":"Tsz-Kiu Aaron Chow","doi":"10.1093/IMRN/RNAB071","DOIUrl":null,"url":null,"abstract":"Consider a compact manifold $M$ with smooth boundary $\\partial M$. Suppose that $g$ and $\\tilde{g}$ are two Riemannian metrics on $M$. We construct a family of metrics on $M$ which agrees with $g$ outside a neighborhood of $\\partial M$ and agrees with $\\tilde{g}$ in a neighborhood of $\\partial M$. We prove that the family of metrics preserves various natural curvature conditions under suitable assumptions on the boundary data. Moreover, under suitable assumptions on the boundary data, we can deform a metric to one with totally geodesic boundary while preserving various natural curvature conditions.","PeriodicalId":8430,"journal":{"name":"arXiv: Differential Geometry","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Positivity of Curvature On Manifolds With Boundary\",\"authors\":\"Tsz-Kiu Aaron Chow\",\"doi\":\"10.1093/IMRN/RNAB071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider a compact manifold $M$ with smooth boundary $\\\\partial M$. Suppose that $g$ and $\\\\tilde{g}$ are two Riemannian metrics on $M$. We construct a family of metrics on $M$ which agrees with $g$ outside a neighborhood of $\\\\partial M$ and agrees with $\\\\tilde{g}$ in a neighborhood of $\\\\partial M$. We prove that the family of metrics preserves various natural curvature conditions under suitable assumptions on the boundary data. Moreover, under suitable assumptions on the boundary data, we can deform a metric to one with totally geodesic boundary while preserving various natural curvature conditions.\",\"PeriodicalId\":8430,\"journal\":{\"name\":\"arXiv: Differential Geometry\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/IMRN/RNAB071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/IMRN/RNAB071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Positivity of Curvature On Manifolds With Boundary
Consider a compact manifold $M$ with smooth boundary $\partial M$. Suppose that $g$ and $\tilde{g}$ are two Riemannian metrics on $M$. We construct a family of metrics on $M$ which agrees with $g$ outside a neighborhood of $\partial M$ and agrees with $\tilde{g}$ in a neighborhood of $\partial M$. We prove that the family of metrics preserves various natural curvature conditions under suitable assumptions on the boundary data. Moreover, under suitable assumptions on the boundary data, we can deform a metric to one with totally geodesic boundary while preserving various natural curvature conditions.