有边界流形上曲率的正性

Tsz-Kiu Aaron Chow
{"title":"有边界流形上曲率的正性","authors":"Tsz-Kiu Aaron Chow","doi":"10.1093/IMRN/RNAB071","DOIUrl":null,"url":null,"abstract":"Consider a compact manifold $M$ with smooth boundary $\\partial M$. Suppose that $g$ and $\\tilde{g}$ are two Riemannian metrics on $M$. We construct a family of metrics on $M$ which agrees with $g$ outside a neighborhood of $\\partial M$ and agrees with $\\tilde{g}$ in a neighborhood of $\\partial M$. We prove that the family of metrics preserves various natural curvature conditions under suitable assumptions on the boundary data. Moreover, under suitable assumptions on the boundary data, we can deform a metric to one with totally geodesic boundary while preserving various natural curvature conditions.","PeriodicalId":8430,"journal":{"name":"arXiv: Differential Geometry","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Positivity of Curvature On Manifolds With Boundary\",\"authors\":\"Tsz-Kiu Aaron Chow\",\"doi\":\"10.1093/IMRN/RNAB071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider a compact manifold $M$ with smooth boundary $\\\\partial M$. Suppose that $g$ and $\\\\tilde{g}$ are two Riemannian metrics on $M$. We construct a family of metrics on $M$ which agrees with $g$ outside a neighborhood of $\\\\partial M$ and agrees with $\\\\tilde{g}$ in a neighborhood of $\\\\partial M$. We prove that the family of metrics preserves various natural curvature conditions under suitable assumptions on the boundary data. Moreover, under suitable assumptions on the boundary data, we can deform a metric to one with totally geodesic boundary while preserving various natural curvature conditions.\",\"PeriodicalId\":8430,\"journal\":{\"name\":\"arXiv: Differential Geometry\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/IMRN/RNAB071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/IMRN/RNAB071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

考虑一个光滑边界$\partial M$的紧致流形$M$。假设$g$和$\tilde{g}$是$M$上的两个黎曼度量。我们在$M$上构造了一个度量族,它在$\partial M$的邻域外与$g$一致,在$\partial M$的邻域内与$\tilde{g}$一致。我们证明了在适当的边界数据假设下,度量族保持了各种自然曲率条件。此外,在边界数据的适当假设下,我们可以在保留各种自然曲率条件的情况下,将度量值变形为具有完全测地线边界的度量值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Positivity of Curvature On Manifolds With Boundary
Consider a compact manifold $M$ with smooth boundary $\partial M$. Suppose that $g$ and $\tilde{g}$ are two Riemannian metrics on $M$. We construct a family of metrics on $M$ which agrees with $g$ outside a neighborhood of $\partial M$ and agrees with $\tilde{g}$ in a neighborhood of $\partial M$. We prove that the family of metrics preserves various natural curvature conditions under suitable assumptions on the boundary data. Moreover, under suitable assumptions on the boundary data, we can deform a metric to one with totally geodesic boundary while preserving various natural curvature conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信