海森堡群上奇异次椭圆系统无穷多弱解的存在性结果

Pub Date : 2022-11-01 DOI:10.2478/ausm-2022-0006
S. Heidari, A. Razani
{"title":"海森堡群上奇异次椭圆系统无穷多弱解的存在性结果","authors":"S. Heidari, A. Razani","doi":"10.2478/ausm-2022-0006","DOIUrl":null,"url":null,"abstract":"Abstract This article shows the existence and multiplicity of weak solutions for the singular subelliptic system on the Heisenberg group { -Δℍnu+a(ξ)u(| z |4+t2)12=λFu(ξ,u,v)in   Ω,-Δℍnv+b(ξ)v(| z |4+t2)12=λFv(ξ,u,v)in   Ω,u=v=0on  ∂Ω. \\left\\{ {\\matrix{ { - {\\Delta _{{\\mathbb{H}^n}}}u + a\\left( \\xi \\right){u \\over {{{\\left( {{{\\left| z \\right|}^4} + {t^2}} \\right)}^{{1 \\over 2}}}}} = \\lambda {F_u}\\left( {\\xi ,u,v} \\right)} \\hfill & {in\\,\\,\\,\\Omega ,} \\hfill \\cr { - {\\Delta _{{\\mathbb{H}^n}}}v + b\\left( \\xi \\right){v \\over {{{\\left( {{{\\left| z \\right|}^4} + {t^2}} \\right)}^{{1 \\over 2}}}}} = \\lambda {F_v}\\left( {\\xi ,u,v} \\right)} \\hfill & {in\\,\\,\\,\\Omega ,} \\hfill \\cr {u = v = 0} \\hfill & {on\\,\\,\\partial \\Omega .} \\hfill \\cr } } \\right. The approach is based on variational methods.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence results of infinitely many weak solutions of a singular subelliptic system on the Heisenberg group\",\"authors\":\"S. Heidari, A. Razani\",\"doi\":\"10.2478/ausm-2022-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article shows the existence and multiplicity of weak solutions for the singular subelliptic system on the Heisenberg group { -Δℍnu+a(ξ)u(| z |4+t2)12=λFu(ξ,u,v)in   Ω,-Δℍnv+b(ξ)v(| z |4+t2)12=λFv(ξ,u,v)in   Ω,u=v=0on  ∂Ω. \\\\left\\\\{ {\\\\matrix{ { - {\\\\Delta _{{\\\\mathbb{H}^n}}}u + a\\\\left( \\\\xi \\\\right){u \\\\over {{{\\\\left( {{{\\\\left| z \\\\right|}^4} + {t^2}} \\\\right)}^{{1 \\\\over 2}}}}} = \\\\lambda {F_u}\\\\left( {\\\\xi ,u,v} \\\\right)} \\\\hfill & {in\\\\,\\\\,\\\\,\\\\Omega ,} \\\\hfill \\\\cr { - {\\\\Delta _{{\\\\mathbb{H}^n}}}v + b\\\\left( \\\\xi \\\\right){v \\\\over {{{\\\\left( {{{\\\\left| z \\\\right|}^4} + {t^2}} \\\\right)}^{{1 \\\\over 2}}}}} = \\\\lambda {F_v}\\\\left( {\\\\xi ,u,v} \\\\right)} \\\\hfill & {in\\\\,\\\\,\\\\,\\\\Omega ,} \\\\hfill \\\\cr {u = v = 0} \\\\hfill & {on\\\\,\\\\,\\\\partial \\\\Omega .} \\\\hfill \\\\cr } } \\\\right. The approach is based on variational methods.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausm-2022-0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausm-2022-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文证明了奇异次椭圆型系统在Heisenberg群{-Δ nu+a(ξ)u(| z |4+t2)12=λFu(ξ,u,v)在Ω,-Δ nv+b(ξ)v(| z |4+t2)12=λFv(ξ,u,v)在Ω,u=v=0on∂Ω上弱解的存在性和多重性。}} \对。该方法基于变分方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Existence results of infinitely many weak solutions of a singular subelliptic system on the Heisenberg group
Abstract This article shows the existence and multiplicity of weak solutions for the singular subelliptic system on the Heisenberg group { -Δℍnu+a(ξ)u(| z |4+t2)12=λFu(ξ,u,v)in   Ω,-Δℍnv+b(ξ)v(| z |4+t2)12=λFv(ξ,u,v)in   Ω,u=v=0on  ∂Ω. \left\{ {\matrix{ { - {\Delta _{{\mathbb{H}^n}}}u + a\left( \xi \right){u \over {{{\left( {{{\left| z \right|}^4} + {t^2}} \right)}^{{1 \over 2}}}}} = \lambda {F_u}\left( {\xi ,u,v} \right)} \hfill & {in\,\,\,\Omega ,} \hfill \cr { - {\Delta _{{\mathbb{H}^n}}}v + b\left( \xi \right){v \over {{{\left( {{{\left| z \right|}^4} + {t^2}} \right)}^{{1 \over 2}}}}} = \lambda {F_v}\left( {\xi ,u,v} \right)} \hfill & {in\,\,\,\Omega ,} \hfill \cr {u = v = 0} \hfill & {on\,\,\partial \Omega .} \hfill \cr } } \right. The approach is based on variational methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信