T. Tao, Jiaguang Ma, Hongbin Chen, Cheng-yu Fu, Yang Hu, Ren Ge, Wenshu Yang, Qi Bo, Cao Lei, Mengwei Zhang, Qiliang Bao, Tan Yi, Yongmei Huang, M. Yao, Wang Qiang
{"title":"光电跟踪控制系统精度控制方法综述","authors":"T. Tao, Jiaguang Ma, Hongbin Chen, Cheng-yu Fu, Yang Hu, Ren Ge, Wenshu Yang, Qi Bo, Cao Lei, Mengwei Zhang, Qiliang Bao, Tan Yi, Yongmei Huang, M. Yao, Wang Qiang","doi":"10.12086/OEE.2020.200315","DOIUrl":null,"url":null,"abstract":"Precision control methodologies are necessary to implement high-precision optical-electric tracking performance, and depend on structural configuration, actuator drive, sensors, control algorithm and load platform. However, the optical-electric tracking system is facing with the three key technologies, disturbance rejection, target tracking and distributed intelligent coordination, both foundation platform and moving platform. In this paper, precision control methodologies aiming at the above several key technical problems are summarized, and the research results of some advanced and frontier control technologies are presented and the main ideas of the future key research directions are pointed out. In addition, the research progress and hotspot of disturbance rejection technology from three aspects of precision drive, inertial stability as well as vibration control according to the different mechanism of disturbance influence are introduced, and the integrated technology of vibration and direction based on Stewart platform is an important technical direction of space optical-electric tracking system are emphasized. The composite axis control system is still the most effective fundamental way to improve the target tracking, and the most essential technical problem is to improve the closed-loop performance of the tip-tilt mirror system in precision tracking. It has to be mentioned that observer control is especially suitable for composite axis optical-electric tracking system, especially the observer technology based solely on error, and the development of three or more advanced composite shaft systems has to pay special attention to the application of high performance motors. Eventually, it is proposed that multi-intelligence cooperative optoelectronic system is the key development direction in the field of optical-electric tracking in the future, and it is necessary for the system to develop multi-agent cooperative positioning, formation control and load platform integration and other precise control technologies.","PeriodicalId":39552,"journal":{"name":"光电工程","volume":"40 1","pages":"200315"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A review on precision control methodologies for optical-electric tracking control system\",\"authors\":\"T. Tao, Jiaguang Ma, Hongbin Chen, Cheng-yu Fu, Yang Hu, Ren Ge, Wenshu Yang, Qi Bo, Cao Lei, Mengwei Zhang, Qiliang Bao, Tan Yi, Yongmei Huang, M. Yao, Wang Qiang\",\"doi\":\"10.12086/OEE.2020.200315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Precision control methodologies are necessary to implement high-precision optical-electric tracking performance, and depend on structural configuration, actuator drive, sensors, control algorithm and load platform. However, the optical-electric tracking system is facing with the three key technologies, disturbance rejection, target tracking and distributed intelligent coordination, both foundation platform and moving platform. In this paper, precision control methodologies aiming at the above several key technical problems are summarized, and the research results of some advanced and frontier control technologies are presented and the main ideas of the future key research directions are pointed out. In addition, the research progress and hotspot of disturbance rejection technology from three aspects of precision drive, inertial stability as well as vibration control according to the different mechanism of disturbance influence are introduced, and the integrated technology of vibration and direction based on Stewart platform is an important technical direction of space optical-electric tracking system are emphasized. The composite axis control system is still the most effective fundamental way to improve the target tracking, and the most essential technical problem is to improve the closed-loop performance of the tip-tilt mirror system in precision tracking. It has to be mentioned that observer control is especially suitable for composite axis optical-electric tracking system, especially the observer technology based solely on error, and the development of three or more advanced composite shaft systems has to pay special attention to the application of high performance motors. Eventually, it is proposed that multi-intelligence cooperative optoelectronic system is the key development direction in the field of optical-electric tracking in the future, and it is necessary for the system to develop multi-agent cooperative positioning, formation control and load platform integration and other precise control technologies.\",\"PeriodicalId\":39552,\"journal\":{\"name\":\"光电工程\",\"volume\":\"40 1\",\"pages\":\"200315\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"光电工程\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.12086/OEE.2020.200315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"光电工程","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12086/OEE.2020.200315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
A review on precision control methodologies for optical-electric tracking control system
Precision control methodologies are necessary to implement high-precision optical-electric tracking performance, and depend on structural configuration, actuator drive, sensors, control algorithm and load platform. However, the optical-electric tracking system is facing with the three key technologies, disturbance rejection, target tracking and distributed intelligent coordination, both foundation platform and moving platform. In this paper, precision control methodologies aiming at the above several key technical problems are summarized, and the research results of some advanced and frontier control technologies are presented and the main ideas of the future key research directions are pointed out. In addition, the research progress and hotspot of disturbance rejection technology from three aspects of precision drive, inertial stability as well as vibration control according to the different mechanism of disturbance influence are introduced, and the integrated technology of vibration and direction based on Stewart platform is an important technical direction of space optical-electric tracking system are emphasized. The composite axis control system is still the most effective fundamental way to improve the target tracking, and the most essential technical problem is to improve the closed-loop performance of the tip-tilt mirror system in precision tracking. It has to be mentioned that observer control is especially suitable for composite axis optical-electric tracking system, especially the observer technology based solely on error, and the development of three or more advanced composite shaft systems has to pay special attention to the application of high performance motors. Eventually, it is proposed that multi-intelligence cooperative optoelectronic system is the key development direction in the field of optical-electric tracking in the future, and it is necessary for the system to develop multi-agent cooperative positioning, formation control and load platform integration and other precise control technologies.
光电工程Engineering-Electrical and Electronic Engineering
CiteScore
2.00
自引率
0.00%
发文量
6622
期刊介绍:
Founded in 1974, Opto-Electronic Engineering is an academic journal under the supervision of the Chinese Academy of Sciences and co-sponsored by the Institute of Optoelectronic Technology of the Chinese Academy of Sciences (IOTC) and the Optical Society of China (OSC). It is a core journal in Chinese and a core journal in Chinese science and technology, and it is included in domestic and international databases, such as Scopus, CA, CSCD, CNKI, and Wanfang.
Opto-Electronic Engineering is a peer-reviewed journal with subject areas including not only the basic disciplines of optics and electricity, but also engineering research and engineering applications. Optoelectronic Engineering mainly publishes scientific research progress, original results and reviews in the field of optoelectronics, and publishes related topics for hot issues and frontier subjects.
The main directions of the journal include:
- Optical design and optical engineering
- Photovoltaic technology and applications
- Lasers, optical fibres and communications
- Optical materials and photonic devices
- Optical Signal Processing